Elastic Deformation of Optical Coherence Tomography Images of Diabetic Macular Edema for Deep-Learning Models Training: How Far to Go?

被引:1
|
作者
Bar-David, Daniel [1 ]
Bar-David, Laura [2 ]
Shapira, Yinon [3 ]
Leibu, Rina
Dori, Dalia
Gebara, Aseel
Schneor, Ronit [1 ]
Fischer, Anath [1 ]
Soudry, Shiri [4 ,5 ]
机构
[1] Technion Israel Inst Technol, Fac Mech Engn, IL-3200003 Haifa, Israel
[2] Rambam Hlth Care Campus, Dept Ophthalmol, Haifa, Israel
[3] Carmel Hosp, Dept Ophthalmol, IL-3436212 Haifa, Israel
[4] Rambam Hlth Care Campus, Clin Res Inst Rambam, IL-3109601 Haifa, Israel
[5] Technion Israel Inst Technol, Ruth & Bruce Rappaport Fac Med, IL-3525433 Haifa, Israel
关键词
Data augmentation; OCT; deep learning; DME; elastic deformation; AUTOMATED DETECTION; SEGMENTATION; DISEASES; FLUID;
D O I
10.1109/JTEHM.2023.3294904
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: To explore the clinical validity of elastic deformation of optical coherence tomography (OCT) images for data augmentation in the development of deep-learning model for detection of diabetic macular edema (DME). Methods: Prospective evaluation of OCT images of DME (n = 320) subject to elastic transformation, with the deformation intensity represented by (sigma). Three sets of images, each comprising 100 pairs of scans (100 original & 100 modified), were grouped according to the range of (sigma), including low-, medium- and high-degree of augmentation; (sigma = 1-6), (sigma = 7-12), and (sigma = 13-18), respectively. Three retina specialists evaluated all datasets in a blinded manner and designated each image as 'original' versus 'modified'. The rate of assignment of 'original' value to modified images (false-negative) was determined for each grader in each dataset. Results: The false-negative rates ranged between 71-77% for the low-, 63-76% for the medium-, and 50-75% for the high-augmentation categories. The corresponding rates of correct identification of original images ranged between 75-85% (p>0.05) in the low-, 73-85% (p>0.05 for graders 1 & 2, p = 0.01 for grader 3) in the medium-, and 81-91% (p<0.005) in the high-augmentation categories. In the subcategory (sigma = 7-9) the false-negative rates were 93-83%, whereas the rates of correctly identifying original images ranged between 89-99% (p>0.05 for all graders). Conclusions: Deformation of low-medium intensity (sigma = 1-9) may be applied without compromising OCT image representativeness in DME.
引用
收藏
页码:487 / 494
页数:8
相关论文
共 50 条
  • [1] Deep-learning based, automated segmentation of macular edema in optical coherence tomography
    Lee, Cecilia S.
    Tyring, Ariel J.
    Deruyter, Nicolaas P.
    Wu, Yue
    Rokem, Ariel
    Lee, Aaron Y.
    BIOMEDICAL OPTICS EXPRESS, 2017, 8 (07): : 3440 - 3448
  • [2] Hybrid deep learning models for the screening of Diabetic Macular Edema in optical coherence tomography volumes
    Rodriguez-Miguel, Antonio
    Arruabarrena, Carolina
    Allendes, German
    Olivera, Maximiliano
    Zarranz-Ventura, Javier
    Teus, Miguel A.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [3] A MULTITASK DEEP-LEARNING SYSTEM FOR ASSESSMENT OF DIABETIC MACULAR ISCHEMIA ON OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY IMAGES
    Yang, Dawei
    Sun, Zihan
    Shi, Jian
    Ran, Anran
    Tang, Fangyao
    Tang, Ziqi
    Lok, Jerry
    Szeto, Simon
    Chan, Jason
    Yip, Fanny
    Zhang, Liang
    Meng, Qianli
    Rasmussen, Martin
    Grauslund, Jakob
    Cheung, Carol Y.
    RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2022, 42 (01): : 184 - 194
  • [4] Deep Learning Classification of Drusen, Choroidal Neovascularization, and Diabetic Macular Edema in Optical Coherence Tomography (OCT) Images
    Esfahani, Parsa Riazi
    Reddy, Akshay J.
    Nawathey, Neel
    Ghauri, Muhammad S.
    Min, Mildred
    Wagh, Himanshu
    Tak, Nathaniel
    Patel, Rakesh
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2023, 15 (07)
  • [5] A Multitask Deep-Learning System to Classify Diabetic Macular Edema for Different Optical Coherence Tomography Devices: A Multicenter Analysis
    Tang, Fangyao
    Wang, Xi
    Ran, An-Ran
    Chan, Carmen K. M.
    Ho, Mary
    Yip, Wilson
    Young, Alvin L.
    Lok, Jerry
    Szeto, Simon
    Chan, Jason
    Yip, Fanny
    Wong, Raymond
    Tang, Ziqi
    Yang, Dawei
    Ng, Danny S.
    Chen, Li Jia
    Brelen, Marten
    Chu, Victor
    Li, Kenneth
    Lai, Tracy H. T.
    Tan, Gavin S.
    Ting, Daniel S. W.
    Huang, Haifan
    Chen, Haoyu
    Ma, Jacey Hongjie
    Tang, Shibo
    Leng, Theodore
    Kakavand, Schahrouz
    Mannil, Suria S.
    Chang, Robert T.
    Liew, Gerald
    Gopinath, Bamini
    Lai, Timothy Y. Y.
    Pang, Chi Pui
    Scanlon, Peter H.
    Wong, Tien Yin
    Tham, Clement C.
    Chen, Hao
    Heng, Pheng-Ann
    Cheung, Carol Y.
    DIABETES CARE, 2021, 44 (09) : 2078 - 2088
  • [6] Optical coherence tomography in diabetic macular edema
    Baskin, Darrell E.
    CURRENT OPINION IN OPHTHALMOLOGY, 2010, 21 (03) : 172 - 177
  • [7] DETECTION OF MORPHOLOGIC PATTERNS OF DIABETIC MACULAR EDEMA USING A DEEP LEARNING APPROACH BASED ON OPTICAL COHERENCE TOMOGRAPHY IMAGES
    Wu, Qiaowei
    Zhang, Bin
    Hu, Yijun
    Liu, Baoyi
    Cao, Dan
    Yang, Dawei
    Peng, Qingsheng
    Zhong, Pingting
    Zeng, Xiaomin
    Xiao, Yu
    Li, Cong
    Fang, Ying
    Feng, Songfu
    Huang, Manqing
    Cai, Hongmin
    Yang, Xiaohong
    Yu, Honghua
    RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2021, 41 (05): : 1110 - 1117
  • [8] Transfer Learning For Diabetic Macular Edema (DME) Detection On Optical Coherence Tomography (OCT) Images
    Chan, Genevieve C. Y.
    Muhammad, Awais
    Shah, Syed A. A.
    Tang, Tong B.
    Lu, Cheng-Kai
    Meriaudeau, Fabrice
    2017 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING APPLICATIONS (ICSIPA), 2017, : 493 - 496
  • [9] Deep learning to infer visual acuity from optical coherence tomography in diabetic macular edema
    Lin, Ting-Yi
    Chen, Hung-Ruei
    Huang, Hsin-Yi
    Hsiao, Yu-Ier
    Kao, Zih-Kai
    Chang, Kao-Jung
    Lin, Tai-Chi
    Yang, Chang-Hao
    Kao, Chung-Lan
    Chen, Po-Yin
    Huang, Shih-En
    Hsu, Chih-Chien
    Chou, Yu-Bai
    Jheng, Ying-Chun
    Chen, Shih-Jen
    Chiou, Shih-Hwa
    Hwang, De-Kuang
    FRONTIERS IN MEDICINE, 2022, 9
  • [10] Diabetic Macular Edema Characterization and Visualization Using Optical Coherence Tomography Images
    Vidal, Placido L.
    de Moura, Joaquim
    Diaz, Macarena
    Novo, Jorge
    Ortega, Marcos
    APPLIED SCIENCES-BASEL, 2020, 10 (21): : 1 - 23