Topological invariants in quantum walks

被引:3
|
作者
Grudka, Andrzej [1 ]
Karczewski, Marcin [2 ]
Kurzynski, Pawel [1 ]
Wojcik, Jan [3 ]
Wojcik, Antoni [1 ]
机构
[1] Adam Mickiewicz Univ, Inst Spintron & Quantum Informat, Fac Phys, PL-61614 Poznan, Poland
[2] Univ Gdansk, Int Ctr Theory Quantum Technol, PL-80309 Gdansk, Poland
[3] Adam Mickiewicz Univ, Fac Phys, PL-61614 Poznan, Poland
关键词
PHASES; MATTER;
D O I
10.1103/PhysRevA.107.032201
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Discrete-time quantum walks (DTQWs) provide a convenient platform for a realization of many topological phases in noninteracting systems. They often offer more possibilities than systems with a static Hamiltonian. Nevertheless, researchers are still looking for DTQW symmetries protecting topological phases and for definitions of appropriate topological invariants. Although the majority of DTQW studies on this topic focus on the so-called split-step quantum walk, two distinct topological phases can be observed in more basic models. Here we infer topological properties of the basic DTQWs directly from the mapping of the Brillouin zone to the Bloch Hamiltonian. We show that for translation-symmetric systems they can be characterized by a homotopy relative to special points. We also propose a topological invariant corresponding to this concept. This invariant indicates the number of edge states at the interface between two distinct phases.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] QUANTUM SUPERGROUPS AND TOPOLOGICAL INVARIANTS OF 3-MANIFOLDS
    ZHANG, RB
    REVIEWS IN MATHEMATICAL PHYSICS, 1995, 7 (05) : 809 - 831
  • [42] Topological invariants for lens spaces and exceptional quantum groups
    Zhang, RB
    LETTERS IN MATHEMATICAL PHYSICS, 1997, 41 (01) : 1 - 11
  • [43] Quantum computing topological invariants of two-dimensional quantum matter
    Niedermeier, Marcel
    Nairn, Marc
    Flindt, Christian
    Lado, Jose L.
    Physical Review Research, 2024, 6 (04):
  • [44] Topological Invariants for Lens Spaces and Exceptional Quantum Groups
    R. B. ZHANG
    Letters in Mathematical Physics, 1997, 41 : 1 - 11
  • [45] Complete homotopy invariants for translation invariant symmetric quantum walks on a chain
    Cedzich, C.
    Geib, T.
    Stahl, C.
    Velazquez, L.
    Werner, A. H.
    Werner, R. F.
    QUANTUM, 2018, 2
  • [46] Space-time-topological events in photonic quantum walks
    Feis, Joshua
    Weidemann, Sebastian
    Sheppard, Tom
    Price, Hannah M.
    Szameit, Alexander
    NATURE PHOTONICS, 2025,
  • [47] Persistence of topological phases in non-Hermitian quantum walks
    Vikash Mittal
    Aswathy Raj
    Sanjib Dey
    Sandeep K. Goyal
    Scientific Reports, 11
  • [48] High winding number of topological phase in periodic quantum walks
    Jia, Yali
    Li, Zhi-Jian
    PHYSICS LETTERS A, 2021, 399
  • [49] Persistence of topological phases in non-Hermitian quantum walks
    Mittal, Vikash
    Raj, Aswathy
    Dey, Sanjib
    Goyal, Sandeep K.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [50] The Topological Classification of One-Dimensional Symmetric Quantum Walks
    C. Cedzich
    T. Geib
    F. A. Grünbaum
    C. Stahl
    L. Velázquez
    A. H. Werner
    R. F. Werner
    Annales Henri Poincaré, 2018, 19 : 325 - 383