Topological invariants in quantum walks

被引:3
|
作者
Grudka, Andrzej [1 ]
Karczewski, Marcin [2 ]
Kurzynski, Pawel [1 ]
Wojcik, Jan [3 ]
Wojcik, Antoni [1 ]
机构
[1] Adam Mickiewicz Univ, Inst Spintron & Quantum Informat, Fac Phys, PL-61614 Poznan, Poland
[2] Univ Gdansk, Int Ctr Theory Quantum Technol, PL-80309 Gdansk, Poland
[3] Adam Mickiewicz Univ, Fac Phys, PL-61614 Poznan, Poland
关键词
PHASES; MATTER;
D O I
10.1103/PhysRevA.107.032201
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Discrete-time quantum walks (DTQWs) provide a convenient platform for a realization of many topological phases in noninteracting systems. They often offer more possibilities than systems with a static Hamiltonian. Nevertheless, researchers are still looking for DTQW symmetries protecting topological phases and for definitions of appropriate topological invariants. Although the majority of DTQW studies on this topic focus on the so-called split-step quantum walk, two distinct topological phases can be observed in more basic models. Here we infer topological properties of the basic DTQWs directly from the mapping of the Brillouin zone to the Bloch Hamiltonian. We show that for translation-symmetric systems they can be characterized by a homotopy relative to special points. We also propose a topological invariant corresponding to this concept. This invariant indicates the number of edge states at the interface between two distinct phases.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Local topological switch for boundary states in quantum walks
    Zhan, Xiang
    Yu, Yue
    Xue, Peng
    PHYSICAL REVIEW A, 2024, 109 (01)
  • [32] Photonic Quantum Walks with Symmetry Protected Topological Phases
    Blanco-Redondo, A.
    Bell, B.
    Segev, M.
    Eggleton, B. J.
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON METAMATERIALS AND NANOPHOTONICS (METANANO-2017), 2017, 1874
  • [33] Measuring a dynamical topological order parameter in quantum walks
    Xiao-Ye Xu
    Qin-Qin Wang
    Markus Heyl
    Jan Carl Budich
    Wei-Wei Pan
    Zhe Chen
    Munsif Jan
    Kai Sun
    Jin-Shi Xu
    Yong-Jian Han
    Chuan-Feng Li
    Guang-Can Guo
    Light: Science & Applications, 9
  • [34] Measuring a dynamical topological order parameter in quantum walks
    Xu, Xiao-Ye
    Wang, Qin-Qin
    Heyl, Markus
    Budich, Jan Carl
    Pan, Wei-Wei
    Chen, Zhe
    Jan, Munsif
    Sun, Kai
    Xu, Jin-Shi
    Han, Yong-Jian
    Li, Chuan-Feng
    Guo, Guang-Can
    LIGHT-SCIENCE & APPLICATIONS, 2020, 9 (01)
  • [35] Continuous-time limit of topological quantum walks
    Balu, Radhakrishnan
    Castillo, Daniel
    Siopsis, George
    Weedbrook, Christian
    ULTRAFAST BANDGAP PHOTONICS II, 2017, 10193
  • [36] Exploring topological phases in quantum walks of twisted light
    Cardano, Filippo
    COMPLEX LIGHT AND OPTICAL FORCES XI, 2017, 10120
  • [37] Robustness of entanglement as an indicator of topological phases in quantum walks
    Wang, Qin-Qin
    Xu, Xiao-Ye
    Pan, Wei-Wei
    Tao, Si-Jing
    Chen, Zhe
    Zhan, Yong-Tao
    Sun, Kai
    Xu, Jin-Shi
    Chen, Geng
    Han, Yong-Jian
    Li, Chuan-Feng
    Guo, Guang-Can
    OPTICA, 2020, 7 (01): : 53 - 58
  • [38] Topological invariants from quantum group at roots of unity
    Ngoc Phu Ha
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2018, 88 (01): : 163 - 188
  • [39] Topological invariants of nonunitary quantum walk with chiral symmetry
    Wang, Qinghao
    Li, Zhi-Jian
    RESULTS IN PHYSICS, 2022, 34
  • [40] TOPOLOGICAL QUANTUM-FIELD THEORY AND INVARIANTS OF GRAPHS FOR QUANTUM GROUPS
    BELIAKOVA, A
    DURHUUS, B
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 167 (02) : 395 - 429