Cycle-Retinex: Unpaired Low-Light Image Enhancement via Retinex-Inline CycleGAN

被引:11
|
作者
Wu, Kangle [1 ]
Huang, Jun [1 ]
Ma, Yong [1 ]
Fan, Fan [1 ]
Ma, Jiayi [1 ]
机构
[1] Wuhan Univ, Elect Informat Sch, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Low light enhancement; CycleGAN; Retinex theory; unsupervised learning; HISTOGRAM EQUALIZATION; FUSION;
D O I
10.1109/TMM.2023.3278385
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Low-light image enhancement aims to recover normal-light images from the images captured under dim environments. Most existing methods could just improve the light appearance globally whereas failing to handle other degradation such as dense noise, color offset and extremely low-light. Moreover, unsupervised methods proposed in recent years lack reliable physical model as the basis, thus universality is greatly limited. To address these problems, we propose a novel low-light image enhancement method via Retinex-inline cycle-consistent generative adversarial network named Cycle-Retinex, whose training is totally dependent on unpaired datasets. Specifically, we organically combine Retinex theory with CycleGAN, by which we decouple low-light image enhancement task into two sub-tasks, i.e. illumination map enhancement and reflectance map restoration. Retinex theory helps CycleGAN simplify low-light image enhancement problem and CycleGAN provides synthetic paired images to guide the training of Retinex decomposition network. We further introduce a self-augmented method to address the color distortion and noise problem, thus making the network learn to enhance low-light images adaptively. Extensive experiments show that the proposed method can achieve promising results.
引用
收藏
页码:1213 / 1228
页数:16
相关论文
共 50 条
  • [41] Fractional structure and texture aware model for image Retinex and low-light enhancement
    Li, Chengxue
    He, Chuanjiang
    APPLIED MATHEMATICAL MODELLING, 2024, 130 : 496 - 513
  • [42] Retinex-Based Variational Framework for Low-Light Image Enhancement and Denoising
    Ma, Qianting
    Wang, Yang
    Zeng, Tieyong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 5580 - 5588
  • [43] Low-Light Image Enhancement by Retinex-Based Algorithm Unrolling and Adjustment
    Liu, Xinyi
    Xie, Qi
    Zhao, Qian
    Wang, Hong
    Meng, Deyu
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 15758 - 15771
  • [44] Low-Light Image Enhancement via New Intuitionistic Fuzzy Generator-Based Retinex Approach
    Ragavendirane, M. S.
    Dhanasekar, S.
    IEEE ACCESS, 2025, 13 : 38454 - 38469
  • [45] Joint Low-Light Image Enhancement and Denoising via a New Retinex-Based Decomposition Model
    Zhao, Chenping
    Yue, Wenlong
    Xu, Jianlou
    Chen, Huazhu
    MATHEMATICS, 2023, 11 (18)
  • [46] A simple illumination map estimation based on Retinex model for low-light image enhancement
    Tang, Shiqiang
    Li, Changli
    Pan, Xinxin
    2021 14TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2021), 2021,
  • [47] Low-Light Image Enhancement Method Based on Retinex Theory by Improving Illumination Map
    Pan, Xinxin
    Li, Changli
    Pan, Zhigeng
    Yan, Jingwen
    Tang, Shiqiang
    Yin, Xinghui
    APPLIED SCIENCES-BASEL, 2022, 12 (10):
  • [48] Low-light and hazy image enhancement using retinex theory and wavelet transform fusion
    Agrawal, Dheeraj
    Yadav, Agnesh Chandra
    Tyagi, Praveen Kumar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (29) : 72519 - 72536
  • [49] Low-light Video Image Enhancement Based on Multiscale Retinex-like Algorithm
    Liu, Huijie
    Sun, Xiankun
    Han, Hua
    Cao, Wei
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 3712 - 3715
  • [50] MARN: Multi-Scale Attention Retinex Network for Low-Light Image Enhancement
    Zhang, Xin
    Wang, Xia
    IEEE ACCESS, 2021, 9 : 50939 - 50948