Cycle-Retinex: Unpaired Low-Light Image Enhancement via Retinex-Inline CycleGAN

被引:11
|
作者
Wu, Kangle [1 ]
Huang, Jun [1 ]
Ma, Yong [1 ]
Fan, Fan [1 ]
Ma, Jiayi [1 ]
机构
[1] Wuhan Univ, Elect Informat Sch, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Low light enhancement; CycleGAN; Retinex theory; unsupervised learning; HISTOGRAM EQUALIZATION; FUSION;
D O I
10.1109/TMM.2023.3278385
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Low-light image enhancement aims to recover normal-light images from the images captured under dim environments. Most existing methods could just improve the light appearance globally whereas failing to handle other degradation such as dense noise, color offset and extremely low-light. Moreover, unsupervised methods proposed in recent years lack reliable physical model as the basis, thus universality is greatly limited. To address these problems, we propose a novel low-light image enhancement method via Retinex-inline cycle-consistent generative adversarial network named Cycle-Retinex, whose training is totally dependent on unpaired datasets. Specifically, we organically combine Retinex theory with CycleGAN, by which we decouple low-light image enhancement task into two sub-tasks, i.e. illumination map enhancement and reflectance map restoration. Retinex theory helps CycleGAN simplify low-light image enhancement problem and CycleGAN provides synthetic paired images to guide the training of Retinex decomposition network. We further introduce a self-augmented method to address the color distortion and noise problem, thus making the network learn to enhance low-light images adaptively. Extensive experiments show that the proposed method can achieve promising results.
引用
收藏
页码:1213 / 1228
页数:16
相关论文
共 50 条
  • [21] A structure and texture revealing retinex model for low-light image enhancement
    Xuesong Li
    Qilei Li
    Marco Anisetti
    Gwanggil Jeon
    Mingliang Gao
    Multimedia Tools and Applications, 2024, 83 : 2323 - 2347
  • [22] Low-light image enhancement based on exponential Retinex variational model
    Chen, Xinyu
    Li, Jinjiang
    Hua, Zhen
    IET IMAGE PROCESSING, 2021, 15 (12) : 3003 - 3019
  • [23] A structure and texture revealing retinex model for low-light image enhancement
    Li, Xuesong
    Li, Qilei
    Anisetti, Marco
    Jeon, Gwanggil
    Gao, Mingliang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (1) : 2323 - 2347
  • [24] A Retinex-based network for image enhancement in low-light environments
    Wu, Ji
    Ding, Bing
    Zhang, Beining
    Ding, Jie
    PLOS ONE, 2024, 19 (05):
  • [25] Low-Light Image Enhancement via Retinex-Style Decomposition of Denoised Deep Image Prior
    Gao, Xianjie
    Zhang, Mingliang
    Luo, Jinming
    SENSORS, 2022, 22 (15)
  • [26] Low-Light Image Enhancement via Weighted Low-Rank Tensor Regularized Retinex Model
    Yang, Weipeng
    Gao, Hongxia
    Zou, Wenbin
    Liu, Tongtong
    Huang, Shasha
    Ma, Jianliang
    PROCEEDINGS OF THE 4TH ANNUAL ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2024, 2024, : 767 - 775
  • [27] Low-light image enhancement via an attention-guided deep Retinex decomposition model
    Luo, Yu
    Lv, Guoliang
    Ling, Jie
    Hu, Xiaomin
    APPLIED INTELLIGENCE, 2025, 55 (02)
  • [28] Single Low-Light Ghost-Free Image Enhancement via Deep Retinex Model
    Liu, Yan
    Lv, Bingxue
    Wang, Jingwen
    Huang, Wei
    Qiu, Tiantian
    Chen, Yunzhong
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2021, 15 (05): : 1814 - 1828
  • [29] Low-light image enhancement based on Retinex-Net with color restoration
    Feng, Wei
    Wu, Guiming
    Zhou, Shiqi
    Li, Xingang
    APPLIED OPTICS, 2023, 62 (25) : 6577 - 6584
  • [30] Low-Light Image Enhancement Algorithm Based on Deep Learning and Retinex Theory
    Lei, Chenyu
    Tian, Qichuan
    APPLIED SCIENCES-BASEL, 2023, 13 (18):