Identifying Host Galaxies of Extragalactic Radio Emission Structures using Machine Learning

被引:1
|
作者
Lou, Kangzhi [1 ,2 ]
Lake, Sean E. E. [1 ]
Tsai, Chao-Wei [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Natl Astron Observ, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Beijing Normal Univ, Inst Frontiers Astron & Astrophys, Beijing 102206, Peoples R China
基金
美国国家科学基金会; 美国国家航空航天局; 中国国家自然科学基金;
关键词
techniques: image processing; surveys; methods: data analysis; ACTIVE GALACTIC NUCLEI; DATA RELEASE; MIDINFRARED SELECTION; CONFIG SAMPLE; DEEP FIELDS; SKY; IDENTIFICATIONS; ATLAS; CLASSIFICATION; POPULATIONS;
D O I
10.1088/1674-4527/acd16b
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This paper presents an automatic multi-band source cross-identification method based on deep learning to identify the hosts of extragalactic radio emission structures. The aim is to satisfy the increased demand for automatic radio source identification and analysis of large-scale survey data from next-generation radio facilities such as the Square Kilometre Array and the Next Generation Very Large Array. We demonstrate a 97% overall accuracy in distinguishing quasi-stellar objects, galaxies and stars using their optical morphologies plus their corresponding mid-infrared information by training and testing a convolutional neural network on Pan-STARRS imaging and WISE photometry. Compared with an expert-evaluated sample, we show that our approach has 95% accuracy at identifying the hosts of extended radio components. We also find that improving radio core localization, for instance by locating its geodesic center, could further increase the accuracy of locating the hosts of systems with a complex radio structure, such as C-shaped radio galaxies. The framework developed in this work can be used for analyzing data from future large-scale radio surveys.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Acoustic Emission Signal Denoising of Bridge Structures Using SOM Neural Network Machine Learning
    Yu, Aiping
    Liu, Xiangtai
    Fu, Feng
    Chen, Xuandong
    Zhang, Yan
    JOURNAL OF PERFORMANCE OF CONSTRUCTED FACILITIES, 2023, 37 (01)
  • [42] Morphological-based Classifications of Radio Galaxies Using Supervised Machine-learning Methods Associated with Image Moments
    Sadeghi, Mohammad
    Javaherian, Mohsen
    Miraghaei, Halime
    ASTRONOMICAL JOURNAL, 2021, 161 (02):
  • [43] Identifying dynamical persistent biomarker structures for rare events using modern integrative machine learning approach
    Dutta, Sreejata
    Box, Andrew C.
    Li, Yanming
    Sardiu, Mihaela E.
    PROTEOMICS, 2023, 23 (21-22)
  • [44] Painting galaxies into dark matter haloes using machine learning
    Agarwal, Shankar
    Dave, Romeel
    Bassett, Bruce A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 478 (03) : 3410 - 3422
  • [45] Using machine learning to study the kinematics of cold gas in galaxies
    Dawson, James M.
    Davis, Timothy A.
    Gomez, Edward L.
    Schock, Justus
    Zabel, Nikki
    Williams, Thomas G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 491 (02) : 2506 - 2519
  • [46] Galaxies in the zone of avoidance: Misclassifications using machine learning tools
    Cortes, P. Marchant
    Castellon, J. L. Nilo
    Alonso, M. V.
    Baravalle, L.
    Villalon, C.
    Sgro, M. A.
    Daza-Perilla, I. V.
    Soto, M.
    Castro, F. Milla
    Minniti, D.
    Masetti, N.
    Valotto, C.
    Lares, M.
    ASTRONOMY & ASTROPHYSICS, 2024, 686
  • [47] Using Machine Learning for the detection of Radio Frequency Interference
    Vinsen, Kevin
    Foster, Samuel
    Dodson, Richard
    2019 URSI ASIA-PACIFIC RADIO SCIENCE CONFERENCE (AP-RASC), 2019,
  • [48] A Machine-learning Method for Identifying Multiwavelength Counterparts of Submillimeter Galaxies: Training and Testing Using AS2UDS and ALESS
    An, Fang Xia
    Stach, S. M.
    Smail, Ian
    Swinbank, A. M.
    Almaini, O.
    Simpson, C.
    Hartley, W.
    Maltby, D. T.
    Ivison, R. J.
    Arumugam, V.
    Wardlow, J. L.
    Cooke, E. A.
    Gullberg, B.
    Thomson, A. P.
    Chen, Chian-Chou
    Simpson, J. M.
    Geach, J. E.
    Scott, D.
    Dunlop, J. S.
    Farrah, D.
    van der Werf, P.
    Blain, A. W.
    Conselice, C.
    Michalowski, M.
    Chapman, S. C.
    Coppin, K. E. K.
    ASTROPHYSICAL JOURNAL, 2018, 862 (02):
  • [49] A Machine Learning Made Catalog of FR-II Radio Galaxies from the FIRST Survey
    Lao, Bao-Qiang
    Yang, Xiao-Long
    Jaiswal, Sumit
    Mohan, Prashanth
    Sun, Xiao-Hui
    Qin, Sheng-Li
    Zhao, Ru-Shuang
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2024, 24 (03)
  • [50] High-energy Emission Component, Population, and Contribution to the Extragalactic Gamma-Ray Background of Gamma-Ray-emitting Radio Galaxies
    Fukazawa, Yasushi
    Matake, Hiroto
    Kayanoki, Taishu
    Inoue, Yoshiyuki
    Finke, Justin
    ASTROPHYSICAL JOURNAL, 2022, 931 (02):