Galaxies in the zone of avoidance: Misclassifications using machine learning tools

被引:1
|
作者
Cortes, P. Marchant [1 ]
Castellon, J. L. Nilo [1 ]
Alonso, M. V. [2 ,3 ]
Baravalle, L. [2 ,3 ]
Villalon, C. [2 ]
Sgro, M. A. [2 ,3 ]
Daza-Perilla, I. V. [2 ,3 ]
Soto, M. [4 ]
Castro, F. Milla [1 ]
Minniti, D. [5 ,6 ,7 ]
Masetti, N. [5 ,8 ]
Valotto, C. [2 ,3 ]
Lares, M. [2 ,3 ]
机构
[1] Univ La Serena, Fac Ciencias, Dept Astron, Ave Juan Cisternas 1200, La Serena, Chile
[2] Inst Astron Teor & Expt IATE CONICET, Laprida 854,X5000BGR, Cordoba, Argentina
[3] Univ Nacl Cordoba, Observ Astron Cordoba, Laprida 854,X5000BGR, Cordoba, Argentina
[4] Univ Atacama, Inst Invest Astron & Ciencias Planetarias, Copayapu 485, Copiapo, Chile
[5] Univ Andres Bello, Fac Ciencias Exactas, Inst Astrofis, Ave Fernandez Concha 700, Santiago, Chile
[6] Vatican Observ, I-00120 Vatican City, Vatican
[7] Univ Fed Santa Catarina, Dept Fis, BR-88040900 Florianopolis, SC, Brazil
[8] INAF Osservatorio Astrofis & Sci Spazio, Via Piero Gobetti 101, I-40129 Bologna, Italy
关键词
catalogs; surveys; infrared: galaxies; X-rays: galaxies; INFRARED-SURVEY-EXPLORER; DIGITAL SKY SURVEY; VISTA VARIABLES; IMAGING SURVEY; MILKY-WAY; CATALOG; CLASSIFICATION; SEXTRACTOR; EMISSION; REDSHIFT;
D O I
10.1051/0004-6361/202348637
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Automated methods for classifying extragalactic objects in large surveys offer significant advantages compared to manual approaches in terms of efficiency and consistency. However, the existence of the Galactic disk raises additional concerns. These regions are known for high levels of interstellar extinction, star crowding, and limited data sets and studies. Aims. In this study, we explore the identification and classification of galaxies in the zone of avoidance (ZoA). In particular, we compare our results in the near-infrared (NIR) with X-ray data. Methods. We analyzed the appearance of objects in the Galactic disk classified as galaxies using a published machine-learning (ML) algorithm and make a comparison with the visually confirmed galaxies from the VVV NIRGC catalog. Results. Our analysis, which includes the visual inspection of all sources cataloged as galaxies throughout the Galactic disk using ML techniques reveals significant differences. Only four galaxies were found in both the NIR and X-ray data sets. Several specific regions of interest within the ZoA exhibit a high probability of being galaxies in X-ray data but closely resemble extended Galactic objects. Our results indicate the difficulty in using ML methods for galaxy classification in the ZoA, which is mainly due to the scarcity of information on galaxies behind the Galactic plane in the training set. They also highlight the importance of considering specific factors that are present to improve the reliability and accuracy of future studies in this challenging region.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Using galaxies to determining reddenings in the Zone of Avoidance
    Burstein, D
    Nearby Large-Scale Structures and the Zone of Avoidance, 2005, 329 : 111 - 115
  • [2] IDENTIFYING GALAXIES IN THE ZONE OF AVOIDANCE
    LU, NY
    DOW, MW
    HOUCK, JR
    SALPETER, EE
    LEWIS, BM
    ASTROPHYSICAL JOURNAL, 1990, 357 (02): : 388 - 407
  • [3] Spatial orientation of galaxies in the Zone of Avoidance
    Aryal, B.
    Yadav, S. N.
    Saurer, W.
    BULLETIN OF THE ASTRONOMICAL SOCIETY OF INDIA, 2012, 40 (01): : 65 - 76
  • [4] A survey of radio galaxies in the zone of avoidance
    Green, AJ
    Harnett, JI
    Juraszek, S
    MAPPING THE HIDDEN UNIVERSE: THE UNIVERSE BEHIND THE MILKY WAY - THE UNIVERSE IN HI, PROCEEDINGS, 2000, 218 : 71 - 78
  • [5] Discovery of highly obscured galaxies in the zone of avoidance
    Marleau, F. R.
    Noriega-Crespo, A.
    Paladini, R.
    Clancy, D.
    Carey, S.
    Shenoy, S.
    Kraemer, K. E.
    Kuchar, T.
    Mizuno, D. R.
    Price, S.
    ASTRONOMICAL JOURNAL, 2008, 136 (02): : 662 - 675
  • [6] DENIS observations of multibeam galaxies in the Zone of Avoidance
    Schröder, A
    Kraan-Korteweg, RC
    Mamon, GA
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA, 1999, 16 (01): : 42 - 47
  • [7] HI-OBSERVATIONS OF GALAXIES IN THE ZONE OF AVOIDANCE IN PUPPIS
    KRAANKORTEWEG, RC
    HUCHTMEIER, WK
    ASTRONOMY & ASTROPHYSICS, 1992, 266 (01) : 150 - 166
  • [8] Collision Avoidance in Crowded Zone Using Adversarial Reinforcement Learning
    Natesan, Balaji
    Liu, Chuan-Ming
    2021 INTERNATIONAL CONFERENCE ON SECURITY AND INFORMATION TECHNOLOGIES WITH AI, INTERNET COMPUTING AND BIG-DATA APPLICATIONS, 2023, 314 : 276 - 283
  • [9] Machine Learning for Machine Tools
    Sinkora, Ed
    MANUFACTURING ENGINEERING, 2023, 171 (02): : 68 - 75
  • [10] New H I-detected galaxies in the zone of avoidance
    Staveley-Smith, L
    Juraszek, S
    Koribalski, BS
    Ekers, RD
    Green, AJ
    Haynes, RF
    Henning, PA
    Kesteven, MJ
    Kraan-Korteweg, RC
    Price, RM
    Sadler, EM
    ASTRONOMICAL JOURNAL, 1998, 116 (06): : 2717 - 2727