Galaxies in the zone of avoidance: Misclassifications using machine learning tools

被引:1
|
作者
Cortes, P. Marchant [1 ]
Castellon, J. L. Nilo [1 ]
Alonso, M. V. [2 ,3 ]
Baravalle, L. [2 ,3 ]
Villalon, C. [2 ]
Sgro, M. A. [2 ,3 ]
Daza-Perilla, I. V. [2 ,3 ]
Soto, M. [4 ]
Castro, F. Milla [1 ]
Minniti, D. [5 ,6 ,7 ]
Masetti, N. [5 ,8 ]
Valotto, C. [2 ,3 ]
Lares, M. [2 ,3 ]
机构
[1] Univ La Serena, Fac Ciencias, Dept Astron, Ave Juan Cisternas 1200, La Serena, Chile
[2] Inst Astron Teor & Expt IATE CONICET, Laprida 854,X5000BGR, Cordoba, Argentina
[3] Univ Nacl Cordoba, Observ Astron Cordoba, Laprida 854,X5000BGR, Cordoba, Argentina
[4] Univ Atacama, Inst Invest Astron & Ciencias Planetarias, Copayapu 485, Copiapo, Chile
[5] Univ Andres Bello, Fac Ciencias Exactas, Inst Astrofis, Ave Fernandez Concha 700, Santiago, Chile
[6] Vatican Observ, I-00120 Vatican City, Vatican
[7] Univ Fed Santa Catarina, Dept Fis, BR-88040900 Florianopolis, SC, Brazil
[8] INAF Osservatorio Astrofis & Sci Spazio, Via Piero Gobetti 101, I-40129 Bologna, Italy
关键词
catalogs; surveys; infrared: galaxies; X-rays: galaxies; INFRARED-SURVEY-EXPLORER; DIGITAL SKY SURVEY; VISTA VARIABLES; IMAGING SURVEY; MILKY-WAY; CATALOG; CLASSIFICATION; SEXTRACTOR; EMISSION; REDSHIFT;
D O I
10.1051/0004-6361/202348637
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Automated methods for classifying extragalactic objects in large surveys offer significant advantages compared to manual approaches in terms of efficiency and consistency. However, the existence of the Galactic disk raises additional concerns. These regions are known for high levels of interstellar extinction, star crowding, and limited data sets and studies. Aims. In this study, we explore the identification and classification of galaxies in the zone of avoidance (ZoA). In particular, we compare our results in the near-infrared (NIR) with X-ray data. Methods. We analyzed the appearance of objects in the Galactic disk classified as galaxies using a published machine-learning (ML) algorithm and make a comparison with the visually confirmed galaxies from the VVV NIRGC catalog. Results. Our analysis, which includes the visual inspection of all sources cataloged as galaxies throughout the Galactic disk using ML techniques reveals significant differences. Only four galaxies were found in both the NIR and X-ray data sets. Several specific regions of interest within the ZoA exhibit a high probability of being galaxies in X-ray data but closely resemble extended Galactic objects. Our results indicate the difficulty in using ML methods for galaxy classification in the ZoA, which is mainly due to the scarcity of information on galaxies behind the Galactic plane in the training set. They also highlight the importance of considering specific factors that are present to improve the reliability and accuracy of future studies in this challenging region.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Developing Prognosis Tools to Identify Learning Difficulties in Children Using Machine Learning Technologies
    Antonis Loizou
    Yiannis Laouris
    Cognitive Computation, 2011, 3 : 490 - 500
  • [42] Developing Prognosis Tools to Identify Learning Difficulties in Children Using Machine Learning Technologies
    Loizou, Antonis
    Laouris, Yiannis
    COGNITIVE COMPUTATION, 2011, 3 (03) : 490 - 500
  • [43] Contour error control of CNC machine tools with vibration avoidance
    Altintas, Y.
    Khoshdarregi, M. R.
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2012, 61 (01) : 335 - 338
  • [44] The Nancay HI Zone of Avoidance survey of 2MASS bright galaxies
    Kraan-Korteweg, Renee C.
    van Driel, Wim
    Schroder, Anja C.
    Ramatsoku, Mpati
    Henning, Patricia A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 481 (01) : 1262 - 1280
  • [45] IoV-Based Collision Avoidance Architecture Using Machine Learning Prediction
    Chang, Che-Cheng
    Ooi, Yee-Ming
    Sieh, Bing-Herng
    IEEE ACCESS, 2021, 9 : 115497 - 115505
  • [46] Galaxies image classification using empirical mode decomposition and machine learning techniques
    Abd Elfattah, Mohamed
    Elbendary, Nashwa
    Elminir, Hamdy K.
    Abu El-Soud, Mohamed A.
    Hassanien, Aboul Ella
    2014 INTERNATIONAL CONFERENCE ON ENGINEERING AND TECHNOLOGY (ICET), 2014,
  • [47] Identifying Host Galaxies of Extragalactic Radio Emission Structures using Machine Learning
    Kangzhi Lou
    Sean E.Lake
    Chao-Wei Tsai
    Research in Astronomy and Astrophysics, 2023, 23 (07) : 141 - 155
  • [48] Radio galaxies classification system using machine learning techniques in the IoT Era
    Dimililer, Kamil
    Teimourian, Hanifa
    Al-Turjman, Fadi
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2024, 36 (03) : 357 - 369
  • [49] ROGER: Reconstructing orbits of galaxies in extreme regions using machine learning techniques
    de los Rios, Martin
    Martinez, Hector J.
    Coenda, Valeria
    Muriel, Hernan
    Ruiz, Andres N.
    Vega-Martinez, Cristian A.
    Cora, Sofia A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 500 (02) : 1784 - 1794
  • [50] Estimating the photometric redshifts of galaxies and QSOs using regression techniques in machine learning
    Momtaz, A.
    Salimi, M. H.
    Shakeri, S.
    SIXTEENTH MARCEL GROSSMANN MEETING, 2023, : 368 - 381