Galaxies in the zone of avoidance: Misclassifications using machine learning tools

被引:1
|
作者
Cortes, P. Marchant [1 ]
Castellon, J. L. Nilo [1 ]
Alonso, M. V. [2 ,3 ]
Baravalle, L. [2 ,3 ]
Villalon, C. [2 ]
Sgro, M. A. [2 ,3 ]
Daza-Perilla, I. V. [2 ,3 ]
Soto, M. [4 ]
Castro, F. Milla [1 ]
Minniti, D. [5 ,6 ,7 ]
Masetti, N. [5 ,8 ]
Valotto, C. [2 ,3 ]
Lares, M. [2 ,3 ]
机构
[1] Univ La Serena, Fac Ciencias, Dept Astron, Ave Juan Cisternas 1200, La Serena, Chile
[2] Inst Astron Teor & Expt IATE CONICET, Laprida 854,X5000BGR, Cordoba, Argentina
[3] Univ Nacl Cordoba, Observ Astron Cordoba, Laprida 854,X5000BGR, Cordoba, Argentina
[4] Univ Atacama, Inst Invest Astron & Ciencias Planetarias, Copayapu 485, Copiapo, Chile
[5] Univ Andres Bello, Fac Ciencias Exactas, Inst Astrofis, Ave Fernandez Concha 700, Santiago, Chile
[6] Vatican Observ, I-00120 Vatican City, Vatican
[7] Univ Fed Santa Catarina, Dept Fis, BR-88040900 Florianopolis, SC, Brazil
[8] INAF Osservatorio Astrofis & Sci Spazio, Via Piero Gobetti 101, I-40129 Bologna, Italy
关键词
catalogs; surveys; infrared: galaxies; X-rays: galaxies; INFRARED-SURVEY-EXPLORER; DIGITAL SKY SURVEY; VISTA VARIABLES; IMAGING SURVEY; MILKY-WAY; CATALOG; CLASSIFICATION; SEXTRACTOR; EMISSION; REDSHIFT;
D O I
10.1051/0004-6361/202348637
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Automated methods for classifying extragalactic objects in large surveys offer significant advantages compared to manual approaches in terms of efficiency and consistency. However, the existence of the Galactic disk raises additional concerns. These regions are known for high levels of interstellar extinction, star crowding, and limited data sets and studies. Aims. In this study, we explore the identification and classification of galaxies in the zone of avoidance (ZoA). In particular, we compare our results in the near-infrared (NIR) with X-ray data. Methods. We analyzed the appearance of objects in the Galactic disk classified as galaxies using a published machine-learning (ML) algorithm and make a comparison with the visually confirmed galaxies from the VVV NIRGC catalog. Results. Our analysis, which includes the visual inspection of all sources cataloged as galaxies throughout the Galactic disk using ML techniques reveals significant differences. Only four galaxies were found in both the NIR and X-ray data sets. Several specific regions of interest within the ZoA exhibit a high probability of being galaxies in X-ray data but closely resemble extended Galactic objects. Our results indicate the difficulty in using ML methods for galaxy classification in the ZoA, which is mainly due to the scarcity of information on galaxies behind the Galactic plane in the training set. They also highlight the importance of considering specific factors that are present to improve the reliability and accuracy of future studies in this challenging region.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Using machine learning tools for protein database biocuration assistance
    Caroline König
    Ilmira Shaim
    Alfredo Vellido
    Enrique Romero
    René Alquézar
    Jesús Giraldo
    Scientific Reports, 8
  • [32] Particle identification and analysis in the SciCRT using machine learning tools
    Garcia, R.
    Anzorena, M.
    Valdes-Galicia, J. F.
    Matsubara, Y.
    Sako, T.
    Ortiz, E.
    Hurtado, A.
    Taylor, R.
    Musalem, O.
    Gonzalez, L. X.
    Itow, Y.
    Kawabata, T.
    Munakata, K.
    Kato, C.
    Kihara, W.
    Ko, Y.
    Shibata, S.
    Takamaru, H.
    Oshima, A.
    Koi, T.
    Kojima, H.
    Tsuchiya, H.
    Watanabe, K.
    Kozai, M.
    Nakamura, Y.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2021, 1003 (1003):
  • [33] Modeling of Reinforcement in Concrete Beams Using Machine Learning Tools
    Aggarwal, Yogesh
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 26, PARTS 1 AND 2, DECEMBER 2007, 2007, 26 : 253 - 257
  • [34] Toxicological assessment of agrochemicals in bees using machine learning tools
    Bernardes, Rodrigo Cupertino
    Botina, Lorena Lisbetd
    da Silva, Fernanda Pereira
    Fernandes, Kenner Morais
    Pereira Lima, Maria Augusta
    Martins, Gustavo Ferreira
    JOURNAL OF HAZARDOUS MATERIALS, 2022, 424
  • [35] Biodegradation of ciprofloxacin using machine learning tools: Kinetics and modelling
    Kamal, Neha
    Saha, Amal Krishna
    Singh, Ekta
    Pandey, Ashok
    Bhargava, Preeti Chaturvedi
    JOURNAL OF HAZARDOUS MATERIALS, 2024, 470
  • [36] Characterizing EMG data using machine-learning tools
    Yousefi, Jamileh
    Hamilton-Wright, Andrew
    COMPUTERS IN BIOLOGY AND MEDICINE, 2014, 51 : 1 - 13
  • [37] DISTRIBUTIONS OF SUBSURFACE ANOMALY PATTERNS USING MACHINE LEARNING TOOLS
    Kayode, J. S.
    Nawawi, M. N. M.
    Yusup, Y.
    Khalil, A. E.
    Arifin, M. H.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 405 - 408
  • [38] Using machine learning tools for protein database biocuration assistance
    Konig, Caroline
    Shaim, Ilmira
    Vellido, Alfredo
    Romero, Enrique
    Alquezar, Rene
    Giraldo, Jestis
    SCIENTIFIC REPORTS, 2018, 8
  • [39] Assessment of Water Hydrochemical Parameters Using Machine Learning Tools
    Malashin, Ivan
    Nelyub, Vladimir
    Borodulin, Aleksei
    Gantimurov, Andrei
    Tynchenko, Vadim
    SUSTAINABILITY, 2025, 17 (02)
  • [40] A Review on Machine Learning Tools
    Kaytan, Mustafa
    Aydilek, Ibrahim Berkan
    2017 INTERNATIONAL ARTIFICIAL INTELLIGENCE AND DATA PROCESSING SYMPOSIUM (IDAP), 2017,