Instance-Specific Augmentation of Brain MRIs with Variational Autoencoders

被引:0
|
作者
Middleton, Jon [1 ,2 ,3 ]
Bauer, Marko [1 ,2 ]
Johansen, Jacob [1 ,2 ,3 ]
Nielsen, Mads [1 ,2 ,3 ]
Sommer, Stefan [1 ,3 ]
Pai, Akshay [2 ]
机构
[1] Univ Copenhagen, Dept Comp Sci, Copenhagen, Denmark
[2] Cerebriu AS, Copenhagen, Denmark
[3] Pioneer Ctr AI, Copenhagen, Denmark
关键词
Segmentation; Disentanglement; Data augmentation; Variational autoencoders;
D O I
10.1007/978-3-031-25046-0_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spatial data augmentation is a standard technique for regularizing deep segmentation networks that are tasked with localizing medical abnormalities. However, a typical spatial augmentation scheme is built upon ad hoc selections of spatial transformation parameters which are not determined by the data set and therefore may not capture spatial variations in the data. For segmentation networks trained in the low-data regime, these ad hoc transformation techniques often fail to encourage better generalization. To address this problem, we propose a variational autoencoder framework for spatial data augmentation. We show how this framework provides a natural, data-driven approach to probabilistic, instance-specific spatial augmentation. Further, we observe that U-Nets trained on data augmented using this framework compare favorably with U-Nets trained using standard spatial augmentation methods.
引用
收藏
页码:49 / 58
页数:10
相关论文
共 50 条
  • [31] Instance-specific algorithm configuration via unsupervised deep graph clustering
    Song, Wen
    Liu, Yi
    Cao, Zhiguang
    Wu, Yaoxin
    Li, Qiqiang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 125
  • [32] Robust Long-Term Tracking via Instance-Specific Proposals
    Liu, Hao
    Hu, Qingyong
    Li, Biao
    Guo, Yulan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (04) : 950 - 962
  • [33] Boosting Multi-Hypothesis Tracking by means of Instance-specific Models
    Paetzold, Michael
    Evangelio, Ruben Heras
    Sikora, Thomas
    2012 IEEE NINTH INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL-BASED SURVEILLANCE (AVSS), 2012, : 416 - 421
  • [34] ACTION RECOGNITION USING INSTANCE-SPECIFIC AND CLASS-CONSISTENT CUES
    Lin, Chin-An
    Lin, Yen-Yu
    Liao, Hong-Yuan Mark
    Jeng, Shyh-Kang
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 1373 - 1376
  • [35] Instance-specific algorithm selection via multi-output learning
    Chen K.
    Dou Y.
    Lv Q.
    Liang Z.
    Chen, Kai (kaenchan.nudt@gmail.com), 1600, Tsinghua University (22): : 210 - 217
  • [36] AUTOMATICITY AND TRANSFER IN SKILLED PERFORMANCE - HOW INSTANCE-SPECIFIC IS CATEGORY LEARNING
    HANN, WS
    CARR, TH
    BULLETIN OF THE PSYCHONOMIC SOCIETY, 1992, 30 (06) : 448 - 448
  • [37] Solving the minimum dominating set problem with instance-specific hardware on FPGAs
    Wakabayashi, S
    Kikuchi, K
    FPT 05: 2005 IEEE INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE TECHNOLOGY, PROCEEDINGS, 2005, : 69 - 76
  • [38] Multi-Target Tracking by Learning Class-Specific and Instance-Specific Cues
    Li, Min
    Chen, Wei
    Huang, Kaiqi
    Tan, Tieniu
    COMPUTER VISION - ACCV 2010, PT II, 2011, 6493 : 67 - 81
  • [39] Lung Cancer Survival Prediction Using Instance-Specific Bayesian Networks
    Jabbari, Fattaneh
    Villaruz, Liza C.
    Davis, Mike
    Cooper, Gregory F.
    ARTIFICIAL INTELLIGENCE IN MEDICINE (AIME 2020), 2020, : 149 - 159
  • [40] Instance-Specific Algorithm Selection via Multi-Output Learning
    Kai Chen
    Yong Dou
    Qi Lv
    Zhengfa Liang
    Tsinghua Science and Technology, 2017, (02) : 210 - 217