Instance-Specific Augmentation of Brain MRIs with Variational Autoencoders

被引:0
|
作者
Middleton, Jon [1 ,2 ,3 ]
Bauer, Marko [1 ,2 ]
Johansen, Jacob [1 ,2 ,3 ]
Nielsen, Mads [1 ,2 ,3 ]
Sommer, Stefan [1 ,3 ]
Pai, Akshay [2 ]
机构
[1] Univ Copenhagen, Dept Comp Sci, Copenhagen, Denmark
[2] Cerebriu AS, Copenhagen, Denmark
[3] Pioneer Ctr AI, Copenhagen, Denmark
关键词
Segmentation; Disentanglement; Data augmentation; Variational autoencoders;
D O I
10.1007/978-3-031-25046-0_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spatial data augmentation is a standard technique for regularizing deep segmentation networks that are tasked with localizing medical abnormalities. However, a typical spatial augmentation scheme is built upon ad hoc selections of spatial transformation parameters which are not determined by the data set and therefore may not capture spatial variations in the data. For segmentation networks trained in the low-data regime, these ad hoc transformation techniques often fail to encourage better generalization. To address this problem, we propose a variational autoencoder framework for spatial data augmentation. We show how this framework provides a natural, data-driven approach to probabilistic, instance-specific spatial augmentation. Further, we observe that U-Nets trained on data augmented using this framework compare favorably with U-Nets trained using standard spatial augmentation methods.
引用
收藏
页码:49 / 58
页数:10
相关论文
共 50 条
  • [21] Localization and Mapping using Instance-specific Mesh Models
    Feng, Qiaojun
    Meng, Yue
    Shan, Mo
    Atanasov, Nikolay
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 4985 - 4991
  • [22] Variational Autoencoders for Data Augmentation in Clinical Studies
    Papadopoulos, Dimitris
    Karalis, Vangelis D.
    APPLIED SCIENCES-BASEL, 2023, 13 (15):
  • [23] Empirical Evaluation of Variational Autoencoders for Data Augmentation
    Jorge, Javier
    Vieco, Jesus
    Paredes, Roberto
    Andreu Sanchez, Joan
    Miguel Benedi, Jose
    PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISIGRAPP 2018), VOL 5: VISAPP, 2018, : 96 - 104
  • [24] A HARDWARE COMPILATION FLOW FOR INSTANCE-SPECIFIC VLIW CORES
    Koester, Markus
    Luk, Wayne
    Brown, Geoffrey
    2008 INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE AND LOGIC APPLICATIONS, VOLS 1 AND 2, 2008, : 618 - +
  • [25] Self-Distillation as Instance-Specific Label Smoothing
    Zhang, Zhilu
    Sabuncu, Mert R.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [26] Data Augmentation with Variational Autoencoders and Manifold Sampling
    Chadebec, Clement
    Allassonniere, Stephanie
    DEEP GENERATIVE MODELS, AND DATA AUGMENTATION, LABELLING, AND IMPERFECTIONS, 2021, 13003 : 184 - 192
  • [27] INSTANCE-SPECIFIC CANONICAL CORRELATION ANALYSIS FOR POSE ALIGNMENT
    Zhai, Deming
    Chang, Hong
    Chen, Xilin
    Gao, Wen
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 2544 - 2547
  • [28] An Empirical Investigation of Instance-Specific Causal Bayesian Network Learning
    Jabbari, Fattaneh
    Visweswaran, Shyam
    Cooper, Gregory F.
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 2582 - 2585
  • [29] Learning Instance-Specific Adaptation for Cross-Domain Segmentation
    Zou, Yuliang
    Zhang, Zizhao
    Li, Chun-Liang
    Zhang, Han
    Pfister, Tomas
    Huang, Jia-Bin
    COMPUTER VISION - ECCV 2022, PT XXXIII, 2022, 13693 : 459 - 476
  • [30] Talker variability and recognition memory: Instance-specific and voice-specific effects
    Goh, WD
    JOURNAL OF EXPERIMENTAL PSYCHOLOGY-LEARNING MEMORY AND COGNITION, 2005, 31 (01) : 40 - 53