Instance-Specific Augmentation of Brain MRIs with Variational Autoencoders

被引:0
|
作者
Middleton, Jon [1 ,2 ,3 ]
Bauer, Marko [1 ,2 ]
Johansen, Jacob [1 ,2 ,3 ]
Nielsen, Mads [1 ,2 ,3 ]
Sommer, Stefan [1 ,3 ]
Pai, Akshay [2 ]
机构
[1] Univ Copenhagen, Dept Comp Sci, Copenhagen, Denmark
[2] Cerebriu AS, Copenhagen, Denmark
[3] Pioneer Ctr AI, Copenhagen, Denmark
关键词
Segmentation; Disentanglement; Data augmentation; Variational autoencoders;
D O I
10.1007/978-3-031-25046-0_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spatial data augmentation is a standard technique for regularizing deep segmentation networks that are tasked with localizing medical abnormalities. However, a typical spatial augmentation scheme is built upon ad hoc selections of spatial transformation parameters which are not determined by the data set and therefore may not capture spatial variations in the data. For segmentation networks trained in the low-data regime, these ad hoc transformation techniques often fail to encourage better generalization. To address this problem, we propose a variational autoencoder framework for spatial data augmentation. We show how this framework provides a natural, data-driven approach to probabilistic, instance-specific spatial augmentation. Further, we observe that U-Nets trained on data augmented using this framework compare favorably with U-Nets trained using standard spatial augmentation methods.
引用
收藏
页码:49 / 58
页数:10
相关论文
共 50 条
  • [1] Instance-Specific Semantic Augmentation for Long-Tailed Image Classification
    Chen, Jiahao
    Su, Bing
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 2544 - 2557
  • [2] Instance-specific algorithm configuration
    Yuri Malitsky
    Constraints, 2015, 20 (4) : 474 - 474
  • [3] Instance-specific canonical correlation analysis
    Zhai, Deming
    Zhang, Yu
    Yeung, Dit-Yan
    Chang, Hong
    Chen, Lin
    Gao, Wen
    NEUROCOMPUTING, 2015, 155 : 205 - 218
  • [4] ISAC - Instance-Specific Algorithm Configuration
    Kadioglu, Serdar
    Malitsky, Yuri
    Sellmann, Meinolf
    Tierney, Kevin
    ECAI 2010 - 19TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2010, 215 : 750 - 755
  • [5] Instance-Specific Accelerators for Minimum Covering
    Christian Plessl
    Marco Platzner
    The Journal of Supercomputing, 2003, 26 : 109 - 129
  • [6] Instance-specific accelerators for minimum covering
    Plessl, C
    Platzner, M
    ERSA 2001: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ENGINEERING OF RECONFIGURABLE SYSTEMS AND ALGORITHMS, 2001, : 85 - 91
  • [7] Learning Instance-Specific Predictive Models
    Visweswaran, Shyam
    Cooper, Gregory F.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2010, 11 : 3333 - 3369
  • [8] Learning instance-specific predictive models
    Visweswaran, Shyam
    Cooper, Gregory F.
    Journal of Machine Learning Research, 2010, 11 : 3333 - 3369
  • [9] Instance-specific accelerators for minimum covering
    Plessl, C
    Platzner, M
    JOURNAL OF SUPERCOMPUTING, 2003, 26 (02): : 109 - 129
  • [10] Generalised and instance-specific modelling for biological systems
    Verdenius, F
    Broeze, J
    ENVIRONMENTAL MODELLING & SOFTWARE, 1999, 14 (05) : 339 - 348