Analysis of interaction dynamics and rogue wave localization in modulation instability using data-driven dominant balance

被引:3
|
作者
Ermolaev, Andrei V. [1 ]
Mabed, Mehdi [1 ]
Finot, Christophe [2 ]
Genty, Goery [3 ]
Dudley, John M. [1 ]
机构
[1] Univ Franche Comte, Inst FEMTO ST, CNRS UMR 6174, F-25000 Besancon, France
[2] Univ Bourgogne, Lab Interdisciplinaire Carnot Bourgogne, CNRS UMR 6303, F-21078 Dijon, France
[3] Tampere Univ, Photon Lab, Tampere 33104, Finland
基金
芬兰科学院;
关键词
PEREGRINE SOLITON; BREATHERS; EQUATIONS; WATER;
D O I
10.1038/s41598-023-37039-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We analyze the dynamics of modulation instability in optical fiber (or any other nonlinear Schrodinger equation system) using the machine-learning technique of data-driven dominant balance. We aim to automate the identification of which particular physical processes drive propagation in different regimes, a task usually performed using intuition and comparison with asymptotic limits. We first apply the method to interpret known analytic results describing Akhmediev breather, Kuznetsov-Ma, and Peregrine soliton (rogue wave) structures, and show how we can automatically distinguish regions of dominant nonlinear propagation from regions where nonlinearity and dispersion combine to drive the observed spatio-temporal localization. Using numerical simulations, we then apply the technique to the more complex case of noise-driven spontaneous modulation instability, and show that we can readily isolate different regimes of dominant physical interactions, even within the dynamics of chaotic propagation.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Investigating Mpox Strain Dynamics Using Computational and Data-Driven Approaches
    Idisi, Isaiah Oke
    Oshinubi, Kayode
    Sewanu, Vigbe Benson
    Yahaya, Mukhtar Muhammed
    Olagbami, Oluwafemi Samson
    Edogbanya, Helen Olaronke
    VIRUSES-BASEL, 2025, 17 (02):
  • [42] Data-Driven Identification of Crane Dynamics Using Regularized Genetic Programming
    Kusznir, Tom
    Smoczek, Jaroslaw
    Karwat, Boleslaw
    APPLIED SCIENCES-BASEL, 2024, 14 (08):
  • [43] Analysis of Data-Driven Detection and Localization of Cyberattacks on Faulty Electric Vehicle Platoons
    Qiu, Jeffrey
    Al Janaideh, Mohammad
    Kundur, Deepa
    2024 IEEE INTERNATIONAL CONFERENCE ON SMART MOBILITY, SM 2024, 2024, : 33 - 39
  • [44] A novel data-driven leak detection and localization algorithm using the Kantorovich distance
    Arifin, B. M. S.
    Li, Zukui
    Shah, Sirish L.
    Meyer, Gordon A.
    Colin, Amanda
    COMPUTERS & CHEMICAL ENGINEERING, 2018, 108 : 300 - 313
  • [45] Data-driven neural networks for source localization and reconstruction using a planar array
    Kaja, Sai Manikanta
    Srinivasan, Srinath
    Chaitanya, S. K.
    Srinivasan, K.
    INTERNATIONAL JOURNAL OF AEROACOUSTICS, 2022, 21 (08) : 684 - 707
  • [46] Data-driven analysis of soil quality indicators using limited data
    Pulido Moncada, Mansonia
    Gabriels, Donald
    Cornelis, Willi M.
    GEODERMA, 2014, 235 : 271 - 278
  • [47] Data-driven fatigue crack quantification and prognosis using nonlinear ultrasonic modulation
    Lim, Hyung Jin
    Sohn, Hoon
    Kim, Yongtak
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 109 : 185 - 195
  • [48] Data-Driven and Calibration-Free Lamb Wave Source Localization With Sparse Sensor Arrays
    Harley, Joel B.
    Moura, Jose M. F.
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2015, 62 (08) : 1516 - 1529
  • [49] A data-driven approach for analyzing dynamics of tide–aquifer interaction in coastal aquifer systems
    Amanpreet Singh
    Madan K. Jha
    Environmental Earth Sciences, 2012, 65 : 1333 - 1355
  • [50] Bias Analysis and Mitigation in Data-Driven Tools Using Provenance
    Moskovitch, Yuval
    Li, Jinyang
    Jagadish, H. V.
    PROCEEDINGS OF 14TH INTERNATIONAL WORKSHOP ON THE THEORY AND PRACTICE OF PROVENANCE, TAPP 2022, 2022, : 1 - 4