Analysis of interaction dynamics and rogue wave localization in modulation instability using data-driven dominant balance

被引:3
|
作者
Ermolaev, Andrei V. [1 ]
Mabed, Mehdi [1 ]
Finot, Christophe [2 ]
Genty, Goery [3 ]
Dudley, John M. [1 ]
机构
[1] Univ Franche Comte, Inst FEMTO ST, CNRS UMR 6174, F-25000 Besancon, France
[2] Univ Bourgogne, Lab Interdisciplinaire Carnot Bourgogne, CNRS UMR 6303, F-21078 Dijon, France
[3] Tampere Univ, Photon Lab, Tampere 33104, Finland
基金
芬兰科学院;
关键词
PEREGRINE SOLITON; BREATHERS; EQUATIONS; WATER;
D O I
10.1038/s41598-023-37039-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We analyze the dynamics of modulation instability in optical fiber (or any other nonlinear Schrodinger equation system) using the machine-learning technique of data-driven dominant balance. We aim to automate the identification of which particular physical processes drive propagation in different regimes, a task usually performed using intuition and comparison with asymptotic limits. We first apply the method to interpret known analytic results describing Akhmediev breather, Kuznetsov-Ma, and Peregrine soliton (rogue wave) structures, and show how we can automatically distinguish regions of dominant nonlinear propagation from regions where nonlinearity and dispersion combine to drive the observed spatio-temporal localization. Using numerical simulations, we then apply the technique to the more complex case of noise-driven spontaneous modulation instability, and show that we can readily isolate different regimes of dominant physical interactions, even within the dynamics of chaotic propagation.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] The data-driven rogue waves of the Hirota equation by using Mix-training PINNs approach
    Sun, Shi-fei
    Tian, Shi-fang
    Li, Biao
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 465
  • [22] Contact Localization of Continuum and Flexible Robot Using Data-Driven Approach
    Xuan Thao Ha
    Wu, Di
    Lai, Chun-Feng
    Ourak, Mouloud
    Borghesan, Gianni
    Menciassi, Arianna
    Vander Poorten, Emmanuel
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (03) : 6910 - 6917
  • [23] Data-driven identification of vehicle dynamics using Koopman operator
    Cibulka, Vit
    Hanis, Tomas
    Hromcik, Martin
    PROCEEDINGS OF THE 2019 22ND INTERNATIONAL CONFERENCE ON PROCESS CONTROL (PC19), 2019, : 167 - 172
  • [24] Multicontact Localization Framework for Flexible Robots Using a Data-Driven Approach
    Ha, Xuan Thao
    Sridhar, Aditya
    Ourak, Mouloud
    Borghesan, Gianni
    Menciassi, Arianna
    Vander Poorten, Emmanuel
    IEEE SENSORS JOURNAL, 2023, 23 (23) : 28993 - 29002
  • [25] Data-driven forced oscillation localization using inferred impulse responses☆
    Liu, Shaohui
    Zhu, Hao
    Kekatos, Vassilis
    ELECTRIC POWER SYSTEMS RESEARCH, 2024, 234
  • [26] Unsupervised data-driven method for damage localization using guided waves
    Lomazzi, Luca
    Junges, Rafael
    Giglio, Marco
    Cadini, Francesco
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 208
  • [27] Data-driven leak detection and localization using LPWAN and Deep Learning
    Rolle, Rodrigo P.
    Monteiro, Lucas N.
    Tomazini, Lucas R.
    Godoy, Eduardo P.
    PROCEEDINGS OF 2022 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR INDUSTRY 4.0 & IOT (IEEE METROIND4.0&IOT), 2022, : 403 - 407
  • [28] Data-driven modelling of wave-structure interaction for a moored floating structure
    Jiang, Changqing
    Zhang, Qi
    el Moctar, Ould
    Xu, Peng
    Iseki, Toshio
    Zhang, Guiyong
    OCEAN ENGINEERING, 2024, 300
  • [29] Big data-driven analysis on urban activity space dynamics
    Gao Q.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2021, 50 (06): : 850
  • [30] Unravelling Regional Water Balance Dynamics in Anthropogenically Shaped Lowlands: A Data-Driven Approach
    Krocher, Jenny
    Ghazaryan, Gohar
    Lischeid, Gunnar
    HYDROLOGICAL PROCESSES, 2025, 39 (01)