Introducing the Loewner Method as a Data-Driven and Regularization-Free Approach for the Distribution of Relaxation Times Analysis of Lithium-Ion Batteries

被引:10
|
作者
Ruether, Tom [1 ,2 ]
Gosea, Ion Victor [3 ]
Jahn, Leonard [1 ,2 ]
Antoulas, Athanasios C. [3 ,4 ]
Danzer, Michael A. [1 ,2 ]
机构
[1] Univ Bayreuth, Chair Elect Energy Syst, Univ Str 30, D-95447 Bayreuth, Germany
[2] Univ Bayreuth, Bavarian Ctr Battery Technol, Univ Str 30, D-95447 Bayreuth, Germany
[3] Max Planck Inst Dynam & Complex Tech Syst, Sandtorstr 1, D-39106 Magdeburg, Germany
[4] Rice Univ, Elect & Comp Engn Dept, 6100 Mainst, Houston, TX 77005 USA
来源
BATTERIES-BASEL | 2023年 / 9卷 / 02期
关键词
impedance spectroscopy; lithium-ion battery; distribution of relaxation times; process identification; Loewner framework; ELECTROCHEMICAL IMPEDANCE; TEMPERATURE; PERFORMANCE; ANODES;
D O I
10.3390/batteries9020132
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
For the identification of processes in lithium-ion batteries (LIB) by electrochemical impedance spectroscopy, frequency data is often transferred into the time domain using the method of distribution of relaxation times (DRT). As this requires regularization due to the ill-conditioned optimization problem, the investigation of data-driven methods becomes of interest. One promising approach is the Loewner method (LM), which has already had a number of applications in different fields of science but has not been applied to batteries yet. In this work, it is first deployed on synthetic data with predefined time constants and gains. The results are analyzed concerning the choice of model order, the type of processes , i.e., distributed and discrete, and the signal-to-noise ratio. Afterwards, the LM is used to identify and analyze the processes of a cylindrical LIB. To verify the results of this assessment a comparison is made with the generalized DRT at two different states of health of the LIB. It is shown that both methods lead to the same qualitative results. For the assignment of processes as well as for the interpretation of minor gains, the LM shows advantageous behavior, whereas the generalized DRT shows better results for the determination of lumped elements and resistive-inductive processes.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] State of charge estimation for lithium-ion batteries based on battery model and data-driven fusion method
    Hou, Jiayang
    Xu, Jun
    Lin, Chuanping
    Jiang, Delong
    Mei, Xuesong
    ENERGY, 2024, 290
  • [42] Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method
    Fu, Shiyi
    Tao, Shengyu
    Fan, Hongtao
    He, Kun
    Liu, Xutao
    Tao, Yulin
    Zuo, Junxiong
    Zhang, Xuan
    Wang, Yu
    Sun, Yaojie
    APPLIED ENERGY, 2024, 353 (353)
  • [43] A hybrid statistical data-driven method for on-line joint state estimation of lithium-ion batteries
    Song, Yuchen
    Liu, Datong
    Liao, Haitao
    Peng, Yu
    APPLIED ENERGY, 2020, 261 (261)
  • [44] A Data-Driven Method for Lithium-Ion Batteries Remaining Useful Life Prediction Based on Optimal Hyperparameters
    Zhu, Yuhao
    Shang, Yunlong
    Duan, Bin
    Gu, Xin
    Li, Shipeng
    Chen, Guicheng
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 7388 - 7392
  • [45] A Data-Driven Online SOP Estimation Method for Lithium-ion Capacitors
    Chen, Wenxin
    Chen, Jinyu
    Chen, Zihan
    Lin, Hanxing
    Chen, Simin
    Chen, Jinchun
    Chen, Han
    Chen, Wanqing
    2023 5TH ASIA ENERGY AND ELECTRICAL ENGINEERING SYMPOSIUM, AEEES, 2023, : 1130 - 1135
  • [46] Degradation mechanism analysis and State-of-Health estimation for lithium-ion batteries based on distribution of relaxation times
    Zhang, Qi
    Wang, Dafang
    Schaltz, Erik
    Stroe, Daniel-Ioan
    Gismero, Alejandro
    Yang, Bowen
    Journal of Energy Storage, 2022, 55
  • [47] Degradation mechanism analysis and State-of-Health estimation for lithium-ion batteries based on distribution of relaxation times
    Zhang, Qi
    Wang, Dafang
    Schaltz, Erik
    Stroe, Daniel-Ioan
    Gismero, Alejandro
    Yang, Bowen
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [48] Investigating solid polymer and ceramic electrolytes for lithium-ion batteries by means of an extended Distribution of Relaxation Times analysis
    Hahn M.
    Rosenbach D.
    Krimalowski A.
    Nazarenus T.
    Moos R.
    Thelakkat M.
    Danzer M.A.
    Electrochimica Acta, 2020, 344
  • [49] Data-driven prognostic techniques for estimation of the remaining useful life of Lithium-ion batteries
    Razavi-Far, Roozbeh
    Farajzadeh-Zanjani, Maryann
    Chakrabarti, Shiladitya
    Saif, Mehrdad
    2016 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2016,
  • [50] A data-driven prediction model for the remaining useful life prediction of lithium-ion batteries
    Feng, Juqiang
    Cai, Feng
    Li, Huachen
    Huang, Kaifeng
    Yin, Hao
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 180 : 601 - 615