Introducing the Loewner Method as a Data-Driven and Regularization-Free Approach for the Distribution of Relaxation Times Analysis of Lithium-Ion Batteries

被引:10
|
作者
Ruether, Tom [1 ,2 ]
Gosea, Ion Victor [3 ]
Jahn, Leonard [1 ,2 ]
Antoulas, Athanasios C. [3 ,4 ]
Danzer, Michael A. [1 ,2 ]
机构
[1] Univ Bayreuth, Chair Elect Energy Syst, Univ Str 30, D-95447 Bayreuth, Germany
[2] Univ Bayreuth, Bavarian Ctr Battery Technol, Univ Str 30, D-95447 Bayreuth, Germany
[3] Max Planck Inst Dynam & Complex Tech Syst, Sandtorstr 1, D-39106 Magdeburg, Germany
[4] Rice Univ, Elect & Comp Engn Dept, 6100 Mainst, Houston, TX 77005 USA
来源
BATTERIES-BASEL | 2023年 / 9卷 / 02期
关键词
impedance spectroscopy; lithium-ion battery; distribution of relaxation times; process identification; Loewner framework; ELECTROCHEMICAL IMPEDANCE; TEMPERATURE; PERFORMANCE; ANODES;
D O I
10.3390/batteries9020132
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
For the identification of processes in lithium-ion batteries (LIB) by electrochemical impedance spectroscopy, frequency data is often transferred into the time domain using the method of distribution of relaxation times (DRT). As this requires regularization due to the ill-conditioned optimization problem, the investigation of data-driven methods becomes of interest. One promising approach is the Loewner method (LM), which has already had a number of applications in different fields of science but has not been applied to batteries yet. In this work, it is first deployed on synthetic data with predefined time constants and gains. The results are analyzed concerning the choice of model order, the type of processes , i.e., distributed and discrete, and the signal-to-noise ratio. Afterwards, the LM is used to identify and analyze the processes of a cylindrical LIB. To verify the results of this assessment a comparison is made with the generalized DRT at two different states of health of the LIB. It is shown that both methods lead to the same qualitative results. For the assignment of processes as well as for the interpretation of minor gains, the LM shows advantageous behavior, whereas the generalized DRT shows better results for the determination of lumped elements and resistive-inductive processes.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Data-Driven State of Health Interval Prediction for Lithium-Ion Batteries
    Song, Ziyao
    Zhang, Han
    Jia, Jianfang
    ELECTRONICS, 2024, 13 (20)
  • [22] A novel data-driven SOH prediction model for lithium-ion batteries
    Kheirkhah-Rad, Ehsan
    Moeini-Aghtaie, Moein
    PROCEEDINGS OF 2021 31ST AUSTRALASIAN UNIVERSITIES POWER ENGINEERING CONFERENCE (AUPEC), 2021,
  • [23] Research on hybrid data-driven method for predicting the remaining useful life of lithium-ion batteries
    Li, Yuanjiang
    Li, Liping
    Li, Lei
    Huang, Xinyu
    Sun, Guodong
    Wang, Yina
    Zhang, Jinglin
    COMPUTER PHYSICS COMMUNICATIONS, 2025, 309
  • [24] A self-adaptive, data-driven method to predict the cycling life of lithium-ion batteries
    Han, Chao
    Gao, Yu-Chen
    Chen, Xiang
    Liu, Xinyan
    Yao, Nan
    Yu, Legeng
    Kong, Long
    Zhang, Qiang
    INFOMAT, 2024, 6 (04)
  • [25] Data-Driven State of Health Estimation Method of Lithium-ion Batteries for Partial Charging Curves
    Tang, Jinrui
    Li, Yang
    Wang, Shaojin
    Xiong, Binyu
    Li, Xiangjun
    Pan, Jinxuan
    Chen, Qihong
    Wang, Peng
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2024, 39 (04) : 2230 - 2243
  • [26] A Data-Driven Thermal Runaway Warning Method for Lithium-Ion Batteries Under Mechanical Abuse
    Li, Jie
    Zhang, Yunlong
    Yuan, Boxing
    He, Yongquan
    Zhu, Wei
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (02): : 5169 - 5179
  • [27] The state of health estimation of lithium-ion batteries based on data-driven and model fusion method
    Huang, Peng
    Gu, Pingwei
    Kang, Yongzhe
    Zhang, Ying
    Duan, Bin
    Zhang, Chenghui
    JOURNAL OF CLEANER PRODUCTION, 2022, 366
  • [28] Data-Driven Methods for the State of Charge Estimation of Lithium-Ion Batteries: An Overview
    Eleftheriadis, Panagiotis
    Giazitzis, Spyridon
    Leva, Sonia
    Ogliari, Emanuele
    FORECASTING, 2023, 5 (03): : 576 - 599
  • [29] Hybrid Physics and Data-Driven Electrochemical States Estimation for Lithium-ion Batteries
    Dong, Guangzhong
    Gao, Guangxin
    Lou, Yunjiang
    Yu, Jincheng
    Chen, Chunlin
    Wei, Jingwen
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2024, 39 (04) : 2689 - 2700
  • [30] Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review
    Li, Yi
    Liu, Kailong
    Foley, Aoife M.
    Zulke, Alana
    Berecibar, Maitane
    Nanini-Maury, Elise
    Van Mierlo, Joeri
    Hoster, Harry E.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 113