Maximizing performance of microbial electrolysis cell fed with dark fermentation effluent from water hyacinth
被引:15
|
作者:
Phan, Thi Pham
论文数: 0引用数: 0
h-index: 0
机构:
Lac Hong Univ, Fac Food Sci & Engn, 10 Huynh Nghe St,Buu Long Ward, Bien Hoa, Dong Nai, VietnamLac Hong Univ, Fac Food Sci & Engn, 10 Huynh Nghe St,Buu Long Ward, Bien Hoa, Dong Nai, Vietnam
Phan, Thi Pham
[1
]
Ta, Qui Thanh Hoai
论文数: 0引用数: 0
h-index: 0
机构:
Gachon Univ, Dept Phys, 1342 Seongnamdaero, Seongnam Si 13120, Gyeonggi Do, South KoreaLac Hong Univ, Fac Food Sci & Engn, 10 Huynh Nghe St,Buu Long Ward, Bien Hoa, Dong Nai, Vietnam
Ta, Qui Thanh Hoai
[2
]
Nguyen, Phan Khanh Thinh
论文数: 0引用数: 0
h-index: 0
机构:
Gachon Univ, Dept Chem & Biol Engn, 1342 Seongnamdaero, Seongnam Si 13120, Gyeonggi Do, South KoreaLac Hong Univ, Fac Food Sci & Engn, 10 Huynh Nghe St,Buu Long Ward, Bien Hoa, Dong Nai, Vietnam
Nguyen, Phan Khanh Thinh
[3
]
机构:
[1] Lac Hong Univ, Fac Food Sci & Engn, 10 Huynh Nghe St,Buu Long Ward, Bien Hoa, Dong Nai, Vietnam
[2] Gachon Univ, Dept Phys, 1342 Seongnamdaero, Seongnam Si 13120, Gyeonggi Do, South Korea
[3] Gachon Univ, Dept Chem & Biol Engn, 1342 Seongnamdaero, Seongnam Si 13120, Gyeonggi Do, South Korea
The performance of microbial electrolysis cell (MEC) fed with dark fermentation effluent (DEF) from water hyacinth (WH) was enhanced in this study. First, the single effects of the auxiliary processes, including centrifugation, dilution, buffering, and external power input, were investigated. Then, the interaction of these processes was further evaluated using response surface methodology (RSM) and a combination of artificial neural network (ANN) and particle swarm optimization (PSO). Statistical analysis results revealed that ANN-PSO outperformed RSM in predictability. Consequently, the ANN-PSO approach determined that a 2.2-fold dilution of centrifuged-DFE (similar to 1.64 g of soluble metabolite products per L), buffer concentration of 75 mM, and an applied voltage of 0.7 V were the optimal conditions for simultaneously maximizing H-2 production yield and energy efficiency of DFE@WH-fed MEC. Under co-optimized conditions, H-2 yield (560.8 +/- 10.8 mL/g-VS) and electrical energy recovery (162.2 +/- 4.7%) significantly improved compared to unoptimized conditions. (c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机构:
Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R ChinaZhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
Su, Huibo
Cheng, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R ChinaZhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
Cheng, Jun
Zhou, Junhu
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R ChinaZhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
Zhou, Junhu
Song, Wenlu
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R ChinaZhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
Song, Wenlu
Cen, Kefa
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R ChinaZhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
机构:
Lac Hong Univ, Fac Food Sci & Engn, 10 Huynh Nghe St,Buu Long Ward, Bien Hoa, Dong Nai, VietnamLac Hong Univ, Fac Food Sci & Engn, 10 Huynh Nghe St,Buu Long Ward, Bien Hoa, Dong Nai, Vietnam
Phan, Thi Pham
Nguyen, Tuan Loi
论文数: 0引用数: 0
h-index: 0
机构:
Duy Tan Univ, Inst Fundamental & Appl Sci, Ho Chi Minh City 700000, Vietnam
Duy Tan Univ, Fac Environm & Chem Engn, Da Nang 550000, VietnamLac Hong Univ, Fac Food Sci & Engn, 10 Huynh Nghe St,Buu Long Ward, Bien Hoa, Dong Nai, Vietnam
Nguyen, Tuan Loi
Nguyen, Phan Khanh Thinh
论文数: 0引用数: 0
h-index: 0
机构:
Gachon Univ, Dept Chem & Biol Engn, Seongnam 13120, Gyeonggi, South KoreaLac Hong Univ, Fac Food Sci & Engn, 10 Huynh Nghe St,Buu Long Ward, Bien Hoa, Dong Nai, Vietnam