A trial solution for imposing boundary conditions of partial differential equations in physics-informed neural networks

被引:1
|
作者
Manavi, Seyedalborz [1 ]
Fattahi, Ehsan [1 ]
Becker, Thomas [1 ]
机构
[1] Tech Univ Munich, Chair Brewing & Beverage Technol, Res Grp Fluid Dynam, Freising Weihenstephan, Germany
关键词
Hard constraint; Surrogate modelling; Physics-informed neural networks; Partial differential equations;
D O I
10.1016/j.engappai.2023.107236
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article proposes an auxiliary function for imposing the boundary and initial conditions in physics-informed neural network models in a hard manner that accelerates the learning process. This auxiliary function consists of two pre-trained neural networks and a main deep neural network with trainable parameters. The novelty of this new auxiliary function is the input of main deep neural network, which takes the outputs of distance function and boundary function as inputs in addition to the spatiotemporal variables. We demonstrate the efficacy and general applicability of the proposed model by applying it to several benchmark-forward problems namely, advection, Helmholtz and Klein-Gordon equations. The accuracy of predictions is examined by comparison with exact solutions. Our findings imply the superiority of the proposed model because of the improvement of the loss convergence to lower values by one order of magnitude for the same number of epochs. In the case of the advection equation, the relative L2 error has been reduced from 0.025 to 0.0201, and from 0.016 to 0.0152. When applied to the Helmholtz equation, our novel model achieved an error of 8.67 x 10-3, surpassing the conventional model's performance, which yielded an error of 6.04 x 10-2. Furthermore, for the Klein-Gordon equation, our new model led to a remarkable reduction in the relative L2 error, from 0.18 to an impressive 4.2 x 10-2.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A General Method for Solving Differential Equations of Motion Using Physics-Informed Neural Networks
    Zhang, Wenhao
    Ni, Pinghe
    Zhao, Mi
    Du, Xiuli
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [32] Evaluating single multiplicative neuron models in physics-informed neural networks for differential equations
    Agraz, Melih
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [33] Structural identification with physics-informed neural ordinary differential equations
    Lai, Zhilu
    Mylonas, Charilaos
    Nagarajaiah, Satish
    Chatzi, Eleni
    JOURNAL OF SOUND AND VIBRATION, 2021, 508
  • [34] Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks
    Sukumar, N.
    Srivastava, Ankit
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 389
  • [35] Physics-informed neural networks for acoustic boundary admittance estimation
    Schmid, Johannes D.
    Bauerschmidt, Philipp
    Gurbuz, Caglar
    Eser, Martin
    Marburg, Steffen
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 215
  • [36] PHYSICS-INFORMED GENERATIVE ADVERSARIAL NETWORKS FOR STOCHASTIC DIFFERENTIAL EQUATIONS
    Yang, Liu
    Zhang, Dongkun
    Karniadakis, George Em
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (01): : A292 - A317
  • [37] Physics-informed quantum neural network for solving forward and inverse problems of partial differential equations
    Xiao, Y.
    Yang, L. M.
    Shu, C.
    Chew, S. C.
    Khoo, B. C.
    Cui, Y. D.
    Liu, Y. Y.
    PHYSICS OF FLUIDS, 2024, 36 (09)
  • [38] A shallow physics-informed neural network for solving partial differential equations on static and evolving surfaces
    Hu, Wei-Fan
    Shih, Yi-Jun
    Lin, Te-Sheng
    Lai, Ming-Chih
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 418
  • [39] A Physics-Informed Recurrent Neural Network for Solving Time-Dependent Partial Differential Equations
    Liang, Ying
    Niu, Ruiping
    Yue, Junhong
    Lei, Min
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2024, 21 (10)
  • [40] PHYSICS-INFORMED FOURIER NEURAL OPERATORS: A MACHINE LEARNING METHOD FOR PARAMETRIC PARTIAL DIFFERENTIAL EQUATIONS
    Zhang, Tao
    Xiao, Hui
    Ghosh, Debdulal
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2025, 9 (01): : 45 - 64