A trial solution for imposing boundary conditions of partial differential equations in physics-informed neural networks

被引:1
|
作者
Manavi, Seyedalborz [1 ]
Fattahi, Ehsan [1 ]
Becker, Thomas [1 ]
机构
[1] Tech Univ Munich, Chair Brewing & Beverage Technol, Res Grp Fluid Dynam, Freising Weihenstephan, Germany
关键词
Hard constraint; Surrogate modelling; Physics-informed neural networks; Partial differential equations;
D O I
10.1016/j.engappai.2023.107236
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article proposes an auxiliary function for imposing the boundary and initial conditions in physics-informed neural network models in a hard manner that accelerates the learning process. This auxiliary function consists of two pre-trained neural networks and a main deep neural network with trainable parameters. The novelty of this new auxiliary function is the input of main deep neural network, which takes the outputs of distance function and boundary function as inputs in addition to the spatiotemporal variables. We demonstrate the efficacy and general applicability of the proposed model by applying it to several benchmark-forward problems namely, advection, Helmholtz and Klein-Gordon equations. The accuracy of predictions is examined by comparison with exact solutions. Our findings imply the superiority of the proposed model because of the improvement of the loss convergence to lower values by one order of magnitude for the same number of epochs. In the case of the advection equation, the relative L2 error has been reduced from 0.025 to 0.0201, and from 0.016 to 0.0152. When applied to the Helmholtz equation, our novel model achieved an error of 8.67 x 10-3, surpassing the conventional model's performance, which yielded an error of 6.04 x 10-2. Furthermore, for the Klein-Gordon equation, our new model led to a remarkable reduction in the relative L2 error, from 0.18 to an impressive 4.2 x 10-2.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Stochastic physics-informed neural ordinary differential equations
    O'Leary, Jared
    Paulson, Joel A.
    Mesbah, Ali
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 468
  • [22] Stochastic physics-informed neural ordinary differential equations
    O'Leary, Jared
    Paulson, Joel A.
    Mesbah, Ali
    Journal of Computational Physics, 2022, 468
  • [23] Estimating model inadequacy in ordinary differential equations with physics-informed neural networks
    Viana, Felipe A. C.
    Nascimento, Renato G.
    Dourado, Arinan
    Yucesan, Yigit A.
    COMPUTERS & STRUCTURES, 2021, 245
  • [24] Improved training of physics-informed neural networks for parabolic differential equations with sharply perturbed initial conditions
    Zong, Yifei
    He, QiZhi
    Tartakovsky, Alexandre M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 414
  • [25] Physics Informed Cellular Neural Networks for Solving Partial Differential Equations
    Slavova, Angela
    Litsyn, Elena
    NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES, NTADES 2023, 2024, 449 : 35 - 45
  • [26] Meta-learning Loss Functions of Parametric Partial Differential Equations Using Physics-Informed Neural Networks
    Koumpanakis, Michail
    Vilalta, Ricardo
    DISCOVERY SCIENCE, DS 2024, PT I, 2025, 15243 : 183 - 197
  • [27] Adversarial Multi-task Learning Enhanced Physics-informed Neural Networks for Solving Partial Differential Equations
    Thanasutives, Pongpisit
    Numao, Masayuki
    Fukui, Ken-ichi
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [28] Symmetry group based domain decomposition to enhance physics-informed neural networks for solving partial differential equations
    Liu, Ye
    Li, Jie-Ying
    Zhang, Li-Sheng
    Guo, Lei-Lei
    Zhang, Zhi-Yong
    CHAOS SOLITONS & FRACTALS, 2024, 189
  • [29] VT-PINN:Variable transformation improves physics-informed neural networks for approximating partial differential equations
    Zheng, Jiachun
    Yang, Yunlei
    APPLIED SOFT COMPUTING, 2024, 167
  • [30] Automatic boundary fitting framework of boundary dependent physics-informed neural network solving partial differential equation with complex boundary conditions
    Xie, Yuchen
    Ma, Yu
    Wang, Yahui
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 414