Revisiting the robustness of the multiscale hybrid-mixed method: The face-based strategy

被引:2
|
作者
Paredes, Diego [1 ,2 ]
Valentin, Frederic [3 ,4 ]
Versieux, Henrique M. [5 ]
机构
[1] Univ Concepcion, Dept Ingn Matemat, Concepcion, Chile
[2] Univ Concepcion, CI2MA, Concepcion, Chile
[3] LNCC Natl Lab Sci Comp, Av Getulio Vargas 333, BR-25651070 Petropolis, RJ, Brazil
[4] Ctr Inria Univ Cote Azur, Valbonne, France
[5] Univ Fed Minas Gerais UFMG, Dept Matemat, Belo Horizonte, MG, Brazil
关键词
Multiscale methods; FEM; Elliptic equations; FINITE-ELEMENT METHODS; CONVERGENCE;
D O I
10.1016/j.cam.2023.115415
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work proposes a new finite element for the multiscale hybrid-mixed method (MHM) applied to the Poisson equation with highly oscillatory coefficients. Unlike the original MHM method, multiscale bases are the solution to local Neumann problems driven by piecewise continuous polynomial interpolation on the skeleton faces of the macroscale mesh. As a result, we prove the optimal convergence of MHM by refining the face partition and leaving the mesh of macroelements fixed. This property allows the MHM method to be resonance free under the usual assumptions of local regularity. The numerical analysis of the method also revisits and complements the original approach proposed by D. Paredes, F. Valentin and H. Versieux (2017). Numerical experiments assess the new theoretical results.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Implementation of an hybrid-mixed stress model based on the use of wavelets
    Castro, LMS
    Barbosa, AR
    COMPUTERS & STRUCTURES, 2006, 84 (10-11) : 718 - 731
  • [22] New H(div)-conforming multiscale hybrid-mixed methods for the elasticity problem on polygonal meshes
    Devloo, Philippe R. B.
    Farias, Agnaldo M.
    Gomes, Sonia M.
    Pereira, Weslley
    dos Santos, Antonio J. B.
    Valentin, Frederic
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (03): : 1005 - 1037
  • [23] A Study on Facial Components Detection Method for Face-based Emotion Recognition
    Oh, Byung-Hun
    Hong, Kwang-Seok
    2014 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING (ICALIP), VOLS 1-2, 2014, : 256 - 259
  • [24] The multiscale hybrid mixed method in general polygonal meshes
    Barrenechea, Gabriel R.
    Jaillet, Fabrice
    Paredes, Diego
    Valentin, Frederic
    NUMERISCHE MATHEMATIK, 2020, 145 (01) : 197 - 237
  • [25] The multiscale hybrid mixed method in general polygonal meshes
    Gabriel R. Barrenechea
    Fabrice Jaillet
    Diego Paredes
    Frédéric Valentin
    Numerische Mathematik, 2020, 145 : 197 - 237
  • [26] A FACE-BASED SMOOTHED FINITE ELEMENT METHOD FOR HYPERELASTIC MODELS AND TISSUE GROWTH
    Minh Tuan Duong
    Staat, Manfred
    11TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS; 5TH EUROPEAN CONFERENCE ON COMPUTATIONAL MECHANICS; 6TH EUROPEAN CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS, VOLS II - IV, 2014, : 2657 - 2668
  • [27] AN EFFECTIVE CURVED COMPOSITE BEAM FINITE-ELEMENT BASED ON THE HYBRID-MIXED FORMULATION
    DORFI, HR
    BUSBY, HR
    COMPUTERS & STRUCTURES, 1994, 53 (01) : 43 - 52
  • [28] An edge/face-based smoothed radial point interpolation method for static analysis of structures
    Feng, S. Z.
    Cui, X. Y.
    Chen, F.
    Liu, S. Z.
    Meng, D. Y.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2016, 68 : 1 - 10
  • [29] A Multiscale Method for HOG-Based Face Recognition
    Wei, Xin
    Guo, Gongde
    Wang, Hui
    Wan, Huan
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2015, PT I, 2015, 9244 : 535 - 545
  • [30] A face-based immersed boundary method for compressible flows using a uniform interpolation stencil
    Kasturi Rangan, M.L.N.V.
    Ghosh, Santanu
    Frontiers in Mechanical Engineering, 2022, 8