Revisiting the robustness of the multiscale hybrid-mixed method: The face-based strategy

被引:2
|
作者
Paredes, Diego [1 ,2 ]
Valentin, Frederic [3 ,4 ]
Versieux, Henrique M. [5 ]
机构
[1] Univ Concepcion, Dept Ingn Matemat, Concepcion, Chile
[2] Univ Concepcion, CI2MA, Concepcion, Chile
[3] LNCC Natl Lab Sci Comp, Av Getulio Vargas 333, BR-25651070 Petropolis, RJ, Brazil
[4] Ctr Inria Univ Cote Azur, Valbonne, France
[5] Univ Fed Minas Gerais UFMG, Dept Matemat, Belo Horizonte, MG, Brazil
关键词
Multiscale methods; FEM; Elliptic equations; FINITE-ELEMENT METHODS; CONVERGENCE;
D O I
10.1016/j.cam.2023.115415
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work proposes a new finite element for the multiscale hybrid-mixed method (MHM) applied to the Poisson equation with highly oscillatory coefficients. Unlike the original MHM method, multiscale bases are the solution to local Neumann problems driven by piecewise continuous polynomial interpolation on the skeleton faces of the macroscale mesh. As a result, we prove the optimal convergence of MHM by refining the face partition and leaving the mesh of macroelements fixed. This property allows the MHM method to be resonance free under the usual assumptions of local regularity. The numerical analysis of the method also revisits and complements the original approach proposed by D. Paredes, F. Valentin and H. Versieux (2017). Numerical experiments assess the new theoretical results.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] A HYBRID-MIXED METHOD FOR ELASTICITY
    Harder, Christopher
    Madureira, Alexandre L.
    Valentin, Frederic
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (02): : 311 - 336
  • [12] Generalizing the multiscale hybrid-mixed method for reactive-advective-diffusive equations
    Araya, Rodolfo
    Jaillet, Fabrice
    Paredes, Diego
    Valentin, Frederic
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 428
  • [13] A Petrov-Galerkin multiscale hybrid-mixed method for the Darcy equation on polytopes
    Fernando, Honorio
    Martins, Larissa
    Pereira, Weslley
    Valentin, Frederic
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (04):
  • [14] Multiscale Hybrid-Mixed Finite Element Method for Flow Simulation in Fractured Porous Media
    Devloo, Philippe
    Teng, Wenchao
    Zhang, Chen-Song
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2019, 119 (01): : 145 - 163
  • [15] ON A MULTISCALE HYBRID-MIXED METHOD FOR ADVECTIVE-REACTIVE DOMINATED PROBLEMS WITH HETEROGENEOUS COEFFICIENTS
    Harder, Christopher
    Paredes, Diego
    Valentin, Frederic
    MULTISCALE MODELING & SIMULATION, 2015, 13 (02): : 491 - 518
  • [16] Multiscale Hybrid-Mixed Discontinuous Galerkin Time Domain method for time domain electromagnetic calculation
    Liu, Bingqi
    Xu, Li
    Jin, Xiaolin
    Li, Bin
    2018 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT2018), 2018,
  • [17] MULTISCALE HYBRID-MIXED METHODS FOR THE STOKES AND BRINKMAN EQUATIONS---A PRIORI ANALYSIS
    Araya, Rodolfo
    Harder, Christopher
    Poza, Abner h.
    Valentin, Fredric
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2025, 63 (02) : 588 - 618
  • [18] A family of Multiscale Hybrid-Mixed finite element methods for the Darcy equation with rough coefficients
    Harder, Christopher
    Paredes, Diego
    Valentin, Frederic
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 245 : 107 - 130
  • [19] GENERALIZED FINITE ELEMENT METHOD ON NONCONVENTIONAL HYBRID-MIXED FORMULATION
    Gois, Wesley
    Baroncini Proenca, Sergio Persival
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2012, 9 (03)
  • [20] Performance of Walsh-based hybrid-mixed stress analysis
    Santos Castro, Luis Manuel
    Teixeira de Freitas, Joao Antonio
    COMPUTERS & STRUCTURES, 2009, 87 (21-22) : 1263 - 1274