Revisiting the robustness of the multiscale hybrid-mixed method: The face-based strategy

被引:2
|
作者
Paredes, Diego [1 ,2 ]
Valentin, Frederic [3 ,4 ]
Versieux, Henrique M. [5 ]
机构
[1] Univ Concepcion, Dept Ingn Matemat, Concepcion, Chile
[2] Univ Concepcion, CI2MA, Concepcion, Chile
[3] LNCC Natl Lab Sci Comp, Av Getulio Vargas 333, BR-25651070 Petropolis, RJ, Brazil
[4] Ctr Inria Univ Cote Azur, Valbonne, France
[5] Univ Fed Minas Gerais UFMG, Dept Matemat, Belo Horizonte, MG, Brazil
关键词
Multiscale methods; FEM; Elliptic equations; FINITE-ELEMENT METHODS; CONVERGENCE;
D O I
10.1016/j.cam.2023.115415
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work proposes a new finite element for the multiscale hybrid-mixed method (MHM) applied to the Poisson equation with highly oscillatory coefficients. Unlike the original MHM method, multiscale bases are the solution to local Neumann problems driven by piecewise continuous polynomial interpolation on the skeleton faces of the macroscale mesh. As a result, we prove the optimal convergence of MHM by refining the face partition and leaving the mesh of macroelements fixed. This property allows the MHM method to be resonance free under the usual assumptions of local regularity. The numerical analysis of the method also revisits and complements the original approach proposed by D. Paredes, F. Valentin and H. Versieux (2017). Numerical experiments assess the new theoretical results.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] ON THE ROBUSTNESS OF MULTISCALE HYBRID-MIXED METHODS
    Paredes, Diego
    Valentin, Frederic
    Versieux, Henrique M.
    MATHEMATICS OF COMPUTATION, 2017, 86 (304) : 525 - 548
  • [2] MULTISCALE HYBRID-MIXED METHOD
    Araya, Rodolfo
    Harder, Christopher
    Paredes, Diego
    Valentin, Frederic
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (06) : 3505 - 3531
  • [3] An adaptive multiscale hybrid-mixed method for the Oseen equations
    Araya, Rodolfo
    Carcamo, Cristian
    Poza, Abner H.
    Valentin, Frederic
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2021, 47 (01)
  • [4] An adaptive multiscale hybrid-mixed method for the Oseen equations
    Rodolfo Araya
    Cristian Cárcamo
    Abner H. Poza
    Frédéric Valentin
    Advances in Computational Mathematics, 2021, 47
  • [5] A MULTISCALE HYBRID-MIXED METHOD FOR THE HELMHOLTZ EQUATION IN HETEROGENEOUS DOMAINS
    Chaumont-Frelet, Theophile
    Valentin, Frederic
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (02) : 1029 - 1067
  • [6] Multiscale hybrid-mixed method for the Stokes and Brinkman equations-The method
    Araya, Rodolfo
    Harder, Christopher
    Poza, Abner H.
    Valentin, Frederic
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 324 : 29 - 53
  • [7] The robustness of face-based CAPTCHAs
    Gao, Haichang
    Lei, Lei
    Zhou, Xin
    Li, Jiawei
    Liu, Xiyang
    CIT/IUCC/DASC/PICOM 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY - UBIQUITOUS COMPUTING AND COMMUNICATIONS - DEPENDABLE, AUTONOMIC AND SECURE COMPUTING - PERVASIVE INTELLIGENCE AND COMPUTING, 2015, : 2252 - 2259
  • [8] THE MULTISCALE HYBRID-MIXED METHOD FOR THE MAXWELL EQUATIONS IN HETEROGENEOUS MEDIA
    Lanteri, Stephane
    Paredes, Diego
    Scheid, Claire
    Valentin, Frederic
    MULTISCALE MODELING & SIMULATION, 2018, 16 (04): : 1648 - 1683
  • [9] A Petrov–Galerkin multiscale hybrid-mixed method for the Darcy equation on polytopes
    Honório Fernando
    Larissa Martins
    Weslley Pereira
    Frédéric Valentin
    Computational and Applied Mathematics, 2023, 42
  • [10] Bridging the multiscale hybrid-mixed and multiscale hybrid high-order methods
    Chaumont-Frelet, Theophile
    Ern, Alexandre
    Lemaire, Simon
    Valentin, Frederic
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2022, 56 (01) : 261 - 285