Experimental assessment of a greenhouse with and without PCM thermal storage energy and prediction their thermal behavior using machine learning algorithms

被引:14
|
作者
Badji, A. [1 ,2 ]
Benseddik, A. [2 ]
Bensaha, H. [2 ]
Boukhelifa, A. [1 ]
Bouhoun, S. [2 ]
Nettari, Ch. [2 ,3 ]
Kherrafi, M. A. [2 ,4 ]
Lalmi, D. [5 ]
机构
[1] Univ Sci & Technol Houari Boumed, Fac Genie Elect, Lab Instrumentat, BP 32, Bab Ezzouar 16111, Alger, Algeria
[2] CDER, Ctr Dev Energies Renouvelables, Unite Rech Appliquee Energies Renouvelables, URAER, Ghardaia 47133, Algeria
[3] Kasdi Merbah Univ, Lab New & Renewable Energies Dev Arid Zones LENREZ, Ouargla 30000, Algeria
[4] Abou Bekr Belkaid Univ, Fac Technol, Dept Mech Engn, Appl Energy & Thermal Lab ETAP, BP 119, Tilimsen 13000, Algeria
[5] Univ Ghardaia, Res Lab Mat Energy Syst Technol & Environm MESTEL, Rue Aeroport Noumerate, Ghardaia 47000, Algeria
关键词
PCM; Energy storage; Greenhouse; Temperature; Machine learning; PHASE-CHANGE MATERIALS; HEAT-STORAGE; PERFORMANCE; SYSTEM; TEMPERATURE; SELECTION; MODEL;
D O I
10.1016/j.est.2023.108133
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This research paper focuses on the design, fabrication, and experimental investigation of a thermal energy storage unit utilizing phase change materials (PCMs) for greenhouses. The study analyzes the performance of PCM heat energy storage systems and uses a machine learning algorithm to forecast greenhouse air temperature. The experimental greenhouse with PCM showed a notable increase in ambient temperature (1-8 degrees C) after midnight compared to conventional greenhouses. The paper provides strategies for implementing PCMs and outlines an operation strategy for achieving near-zero energy consumption in solar greenhouses during winter. The ANN algorithm demonstrated promising results for predicting internal greenhouse parameters. Overall, this study contributes to the advancement of thermal energy storage systems and their potential applications in sustainable agriculture.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Machine Learning (ML) Based Thermal Management for Cooling of Electronics Chips by Utilizing Thermal Energy Storage (TES) in Packaging That Leverages Phase Change Materials (PCM)
    Chuttar, Aditya
    Banerjee, Debjyoti
    ELECTRONICS, 2021, 10 (22)
  • [42] Modeling and Experimental Validation of the Thermal Behavior of PCM using DSC Input Data
    Pop, Octavian G.
    Iuga, Cristina A.
    Tutunaru, Lucian Fechete
    Balan, Mugur C.
    3RD JOINT INTERNATIONAL CONFERENCE ON ENERGY ENGINEERING AND SMART MATERIALS (ICEESM-2018) AND INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY AND NANOMATERIALS IN ENERGY (ICNNE-2018), 2018, 2004
  • [43] Experimental investigation of thermal conductivity enhancement of carbon foam saturated with PCM and PCM/MWCNTs composite for energy storage systems
    S. A. Nada
    W. G. Alshaer
    Heat and Mass Transfer, 2019, 55 : 2667 - 2677
  • [44] A Thermal Energy Usage Prediction Method for Electric Thermal Storage Heaters Based on Deep Learning
    Wang Zi-hao
    Wang Jing
    Zhao Ling
    Jia Shu-juan
    2019 IEEE 4TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYSIS (ICCCBDA), 2019, : 149 - 154
  • [45] Experimental investigation of thermal conductivity enhancement of carbon foam saturated with PCM and PCM/MWCNTs composite for energy storage systems
    Nada, S. A.
    Alshaer, W. G.
    HEAT AND MASS TRANSFER, 2019, 55 (09) : 2667 - 2677
  • [46] Experimental study of thermal behavior during charging in a thermal energy storage packed bed using radial pipe injection
    Al-Azawii, Mohammad M. S.
    Jacobsen, Duncan
    Bueno, Pablo
    Anderson, Ryan
    APPLIED THERMAL ENGINEERING, 2020, 180
  • [47] Experimental Study on Two PCM Macro-Encapsulation Designs in a Thermal Energy Storage Tank
    Verez, David
    Borri, Emiliano
    Crespo, Alicia
    Mselle, Boniface Dominick
    de Gracia, Alvaro
    Zsembinszki, Gabriel
    Cabeza, Luisa F.
    APPLIED SCIENCES-BASEL, 2021, 11 (13):
  • [48] Experimental Investigation on Performance of Hybrid PCM's on Addition of Nano Particles in Thermal Energy Storage
    Kumar, Mechiri Sandeep
    Krishna, Vemula Murali
    MATERIALS TODAY-PROCEEDINGS, 2019, 17 : 271 - 276
  • [49] Prediction of seasonal urban thermal field variance index using machine learning algorithms in Cumilla, Bangladesh
    Abdulla-Al Kafy
    Abdullah-Al-Faisal
    Rahma, Shahinoo
    Islam, Muhaiminul
    Rakib, Abdullah Al
    Islam, Arshadul
    Khan, Hasib Hasan
    Sikdar, Soumik
    Sarker, Hasnan Sakin
    Mawa, Jannatul
    Sattar, Golam Shabbir
    SUSTAINABLE CITIES AND SOCIETY, 2021, 64
  • [50] PCM thermal energy storage in solar heating of ventilation air-Experimental and numerical investigations
    Stritih, Uros
    Charvat, Pavel
    Kozelj, Rok
    Klimes, Lubomir
    Osterman, Eneja
    Ostry, Milan
    Butala, Vincenc
    SUSTAINABLE CITIES AND SOCIETY, 2018, 37 : 104 - 115