Experimental assessment of a greenhouse with and without PCM thermal storage energy and prediction their thermal behavior using machine learning algorithms

被引:14
|
作者
Badji, A. [1 ,2 ]
Benseddik, A. [2 ]
Bensaha, H. [2 ]
Boukhelifa, A. [1 ]
Bouhoun, S. [2 ]
Nettari, Ch. [2 ,3 ]
Kherrafi, M. A. [2 ,4 ]
Lalmi, D. [5 ]
机构
[1] Univ Sci & Technol Houari Boumed, Fac Genie Elect, Lab Instrumentat, BP 32, Bab Ezzouar 16111, Alger, Algeria
[2] CDER, Ctr Dev Energies Renouvelables, Unite Rech Appliquee Energies Renouvelables, URAER, Ghardaia 47133, Algeria
[3] Kasdi Merbah Univ, Lab New & Renewable Energies Dev Arid Zones LENREZ, Ouargla 30000, Algeria
[4] Abou Bekr Belkaid Univ, Fac Technol, Dept Mech Engn, Appl Energy & Thermal Lab ETAP, BP 119, Tilimsen 13000, Algeria
[5] Univ Ghardaia, Res Lab Mat Energy Syst Technol & Environm MESTEL, Rue Aeroport Noumerate, Ghardaia 47000, Algeria
关键词
PCM; Energy storage; Greenhouse; Temperature; Machine learning; PHASE-CHANGE MATERIALS; HEAT-STORAGE; PERFORMANCE; SYSTEM; TEMPERATURE; SELECTION; MODEL;
D O I
10.1016/j.est.2023.108133
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This research paper focuses on the design, fabrication, and experimental investigation of a thermal energy storage unit utilizing phase change materials (PCMs) for greenhouses. The study analyzes the performance of PCM heat energy storage systems and uses a machine learning algorithm to forecast greenhouse air temperature. The experimental greenhouse with PCM showed a notable increase in ambient temperature (1-8 degrees C) after midnight compared to conventional greenhouses. The paper provides strategies for implementing PCMs and outlines an operation strategy for achieving near-zero energy consumption in solar greenhouses during winter. The ANN algorithm demonstrated promising results for predicting internal greenhouse parameters. Overall, this study contributes to the advancement of thermal energy storage systems and their potential applications in sustainable agriculture.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Improved thermal energy storage behavior of a novel nanofluid as phase change material (PCM)
    Harikrishnan, S.
    Devaraju, A.
    Kumar, G. Rajesh
    Kalaiselvam, S.
    MATERIALS TODAY-PROCEEDINGS, 2019, 9 : 410 - 421
  • [32] Design and experimental analysis of a cooling system with erythritol/xylitol PCM thermal energy storage
    Hou, Xu
    Xing, Yuming
    Xu, Ze
    Du, Yi
    Gao, Yuliang
    Yin, Jianbao
    Wang, Shisong
    JOURNAL OF ENERGY STORAGE, 2024, 87
  • [33] Microencapsulation of a eutectic PCM using in situ polymerization technique for thermal energy storage
    Srinivasaraonaik, B.
    Singh, Lok Pratap
    Tyagi, Inderjeet
    Rawat, Anujay
    Sinha, Shishir
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (05) : 3854 - 3864
  • [34] Experimental investigation on heat transfer behavior of the novel ternary eutectic PCM embedded with MWCNT for thermal energy storage systems
    Dinesh, R.
    Hussain, S. Imran
    Roseline, A. Ameelia
    Kalaiselvam, S.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 145 (06) : 2935 - 2949
  • [35] Experimental investigation on thermal behavior of graphene dispersed erythritol PCM in a shell and helical tube latent energy storage system
    Mayilvelnathan, V
    Arasu, Valan A.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2020, 155
  • [36] Experimental investigation on heat transfer behavior of the novel ternary eutectic PCM embedded with MWCNT for thermal energy storage systems
    R. Dinesh
    S. Imran Hussain
    A. Ameelia Roseline
    S. Kalaiselvam
    Journal of Thermal Analysis and Calorimetry, 2021, 145 : 2935 - 2949
  • [37] Optimization of Thermal Conductance at Interfaces Using Machine Learning Algorithms
    Rustam, Sabiha
    Schram, Malachi
    Lu, Zexi
    Chaka, Anne M.
    Rosenthal, W. Steven
    Pfaendtner, Jim
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (28) : 32590 - 32597
  • [38] Predicting Individual Thermal Comfort using Machine Learning Algorithms
    Farhan, Asma Ahmad
    Pattipati, Krishna
    Wang, Bing
    Luh, Peter
    2015 INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2015, : 708 - 713
  • [39] Experimental and numerical investigation of a tube-in-tank latent thermal energy storage unit using composite PCM
    Meng, Z. N.
    Zhang, P.
    APPLIED ENERGY, 2017, 190 : 524 - 539
  • [40] Experimental investigation of low-temperature latent heat thermal energy storage system using PCM and NEPCM
    John, M. R. Wilson
    Mamidi, Thrinadh
    Subendran, Satishkumar
    Subramanian, L. R. Ganapathy
    2ND INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING (ICAME 2018), 2018, 402