Few-Shot Object Detection with Memory Contrastive Proposal Based on Semantic Priors

被引:0
|
作者
Xiao, Linlin [1 ]
Xu, Huahu [1 ]
Xiao, Junsheng [1 ]
Huang, Yuzhe [1 ]
机构
[1] Shanghai Univ, Sch Comp Engn & Sci, Shanghai 200444, Peoples R China
关键词
object detection; few-shot learning; semantic fusion; contrastive learning; memory contrastive proposal;
D O I
10.3390/electronics12183835
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Few-shot object detection (FSOD) aims to detect objects belonging to novel classes with few training samples. With the small number of novel class samples, the visual information extracted is insufficient to accurately represent the object itself, presenting significant intra-class variance and confusion between classes of similar samples, resulting in large errors in the detection results of the novel class samples. We propose a few-shot object detection framework to achieve effective classification and detection by embedding semantic information and contrastive learning. Firstly, we introduced a semantic fusion (SF) module, which projects semantic spatial information into visual space for interaction, to compensate for the lack of visual information and further enhance the representation of feature information. To further improve the classification performance, we embed the memory contrastive proposal (MCP) module to adjust the distribution of the feature space by calculating the contrastive loss between the class-centered features of previous samples and the current input features to obtain a more discriminative embedding space for better intra-class aggregation and inter-class separation for subsequent classification and detection. Extensive experiments on the PASCAL VOC and MS-COCO datasets show that the performance of our proposed method is effectively improved. Our proposed method improves nAP50 over the baseline model by 4.5% and 3.5%.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Few-Shot Air Object Detection Network
    Cai, Wei
    Wang, Xin
    Jiang, Xinhao
    Yang, Zhiyong
    Di, Xingyu
    Gao, Weijie
    ELECTRONICS, 2023, 12 (19)
  • [32] Few-Shot Learning for Road Object Detection
    Majee, Anay
    Agrawal, Kshitij
    Subramanian, Anbumani
    AAAI WORKSHOP ON META-LEARNING AND METADL CHALLENGE, VOL 140, 2021, 140 : 115 - 126
  • [33] Incremental Few-Shot Object Detection for Robotics
    Li, Yiting
    Zhu, Haiyue
    Tian, Sichao
    Feng, Fan
    Ma, Jun
    Teo, Chek Sing
    Xiang, Cheng
    Vadakkepat, Prahlad
    Lee, Tong Heng
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 8447 - 8453
  • [34] Few-Shot Object Detection with Weight Imprinting
    Yan, Dingtian
    Huang, Jitao
    Sun, Hai
    Ding, Fuqiang
    COGNITIVE COMPUTATION, 2023, 15 (05) : 1725 - 1735
  • [35] Spatial reasoning for few-shot object detection
    Kim, Geonuk
    Jung, Hong-Gyu
    Lee, Seong-Whan
    PATTERN RECOGNITION, 2021, 120
  • [36] Industrial few-shot fractal object detection
    Huang, Haoran
    Luo, Xiaochuan
    Yang, Chen
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (28): : 21055 - 21069
  • [37] Hallucination Improves Few-Shot Object Detection
    Zhang, Weilin
    Wang, Yu-Xiong
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 13003 - 13012
  • [38] Few-Shot Object Detection with Model Calibration
    Fan, Qi
    Tang, Chi-Keung
    Tai, Yu-Wing
    COMPUTER VISION, ECCV 2022, PT XIX, 2022, 13679 : 720 - 739
  • [39] A Closer Look at Few-Shot Object Detection
    Liu, Yuhao
    Dong, Le
    He, Tengyang
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VIII, 2024, 14432 : 430 - 447
  • [40] Few-Shot Object Detection: A Comprehensive Survey
    Koehler, Mona
    Eisenbach, Markus
    Gross, Horst-Michael
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 11958 - 11978