Few-Shot Object Detection with Weight Imprinting

被引:3
|
作者
Yan, Dingtian [1 ]
Huang, Jitao [1 ]
Sun, Hai [1 ]
Ding, Fuqiang [1 ]
机构
[1] ChinaTelecom, Dept AI Res, 189 West Xiuyan Rd, Shanghai, Peoples R China
关键词
Few-shot object detection; Transfer learning; Weight imprinting;
D O I
10.1007/s12559-023-10152-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The goal of few-shot learning is to learn a solution to a problem from limited training samples. In recent years, with the promotion and application of deep neural network-based vision algorithms, the problem of data scarcity has become increasingly prominent. This has prompted comprehensive study on few-shot learning algorithms among academic and industrial communities. This paper first analyzes the bias phenomenon of proposal estimation in the classic transfer learning few-shot object detection paradigm, and then proposes an improved scheme that combines weight imprinting and model decoupling. On the one hand, we extend the weight imprinting algorithm on the general Faster R-CNN framework to enhance the fine-tuning performance; on the other hand, we exploit model decoupling to minimize the over-fitting in data-scarce scenarios. Our proposed method achieves 12.3, 15.0, and 18.9 (nAP) top accuracy on novel set of COCO under 5-shot, 10-shot, and 30-shot settings, and achieves 57.7 and 60.2 (nAP50) top accuracy on novel set of VOC Split 3 under 5-shot and 10-shot settings. Compared with the latest published studies, our proposed method provides a competitive detection performance on novel categories only via fine-tuning. Moreover, it retains the original architecture of the network and is practical in real industrial scenarios.
引用
收藏
页码:1725 / 1735
页数:11
相关论文
共 50 条
  • [1] Few-Shot Object Detection with Weight Imprinting
    Dingtian Yan
    Jitao Huang
    Hai Sun
    Fuqiang Ding
    Cognitive Computation, 2023, 15 : 1725 - 1735
  • [2] Few-Shot Object Detection: A Survey
    Antonelli, Simone
    Avola, Danilo
    Cinque, Luigi
    Crisostomi, Donato
    Foresti, Gian Luca
    Galasso, Fabio
    Marini, Marco Raoul
    Mecca, Alessio
    Pannone, Daniele
    ACM COMPUTING SURVEYS, 2022, 54 (11S)
  • [3] Few-Shot Object Counting and Detection
    Thanh Nguyen
    Chau Pham
    Khoi Nguyen
    Minh Hoai
    COMPUTER VISION, ECCV 2022, PT XX, 2022, 13680 : 348 - 365
  • [4] Few-Shot Video Object Detection
    Fan, Qi
    Tang, Chi-Keung
    Tai, Yu-Wing
    COMPUTER VISION, ECCV 2022, PT XX, 2022, 13680 : 76 - 98
  • [5] Few-Shot Object Detection of drones
    Zou Weibao
    Liu Xindi
    Yang Jitao
    Qu Wei
    INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND ENERGY TECHNOLOGIES (ICECET 2021), 2021, : 1030 - 1034
  • [6] Few-Shot Air Object Detection Network
    Cai, Wei
    Wang, Xin
    Jiang, Xinhao
    Yang, Zhiyong
    Di, Xingyu
    Gao, Weijie
    ELECTRONICS, 2023, 12 (19)
  • [7] Few-Shot Learning for Road Object Detection
    Majee, Anay
    Agrawal, Kshitij
    Subramanian, Anbumani
    AAAI WORKSHOP ON META-LEARNING AND METADL CHALLENGE, VOL 140, 2021, 140 : 115 - 126
  • [8] Incremental Few-Shot Object Detection for Robotics
    Li, Yiting
    Zhu, Haiyue
    Tian, Sichao
    Feng, Fan
    Ma, Jun
    Teo, Chek Sing
    Xiang, Cheng
    Vadakkepat, Prahlad
    Lee, Tong Heng
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 8447 - 8453
  • [9] Spatial reasoning for few-shot object detection
    Kim, Geonuk
    Jung, Hong-Gyu
    Lee, Seong-Whan
    PATTERN RECOGNITION, 2021, 120
  • [10] Industrial few-shot fractal object detection
    Huang, Haoran
    Luo, Xiaochuan
    Yang, Chen
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (28): : 21055 - 21069