Few-Shot Object Detection with Weight Imprinting

被引:3
|
作者
Yan, Dingtian [1 ]
Huang, Jitao [1 ]
Sun, Hai [1 ]
Ding, Fuqiang [1 ]
机构
[1] ChinaTelecom, Dept AI Res, 189 West Xiuyan Rd, Shanghai, Peoples R China
关键词
Few-shot object detection; Transfer learning; Weight imprinting;
D O I
10.1007/s12559-023-10152-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The goal of few-shot learning is to learn a solution to a problem from limited training samples. In recent years, with the promotion and application of deep neural network-based vision algorithms, the problem of data scarcity has become increasingly prominent. This has prompted comprehensive study on few-shot learning algorithms among academic and industrial communities. This paper first analyzes the bias phenomenon of proposal estimation in the classic transfer learning few-shot object detection paradigm, and then proposes an improved scheme that combines weight imprinting and model decoupling. On the one hand, we extend the weight imprinting algorithm on the general Faster R-CNN framework to enhance the fine-tuning performance; on the other hand, we exploit model decoupling to minimize the over-fitting in data-scarce scenarios. Our proposed method achieves 12.3, 15.0, and 18.9 (nAP) top accuracy on novel set of COCO under 5-shot, 10-shot, and 30-shot settings, and achieves 57.7 and 60.2 (nAP50) top accuracy on novel set of VOC Split 3 under 5-shot and 10-shot settings. Compared with the latest published studies, our proposed method provides a competitive detection performance on novel categories only via fine-tuning. Moreover, it retains the original architecture of the network and is practical in real industrial scenarios.
引用
收藏
页码:1725 / 1735
页数:11
相关论文
共 50 条
  • [31] Temporal Speciation Network for Few-Shot Object Detection
    Zhao, Xiaowei
    Liu, Xianglong
    Ma, Yuqing
    Bai, Shihao
    Shen, Yifan
    Hao, Zeyu
    Liu, Aishan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 8267 - 8278
  • [32] Orthogonal Progressive Network for Few-shot Object Detection
    Wang, Bingxin
    Yu, Dehong
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 264
  • [33] Generalized Few-Shot Object Detection without Forgetting
    Fan, Zhibo
    Ma, Yuchen
    Li, Zeming
    Sun, Jian
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 4525 - 4534
  • [34] Open-World Few-Shot Object Detection
    Chen, Wei
    Zhang, Shengchuan
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT I, 2023, 14086 : 556 - 567
  • [35] Few-Shot Object Detection on Remote Sensing Images
    Li, Xiang
    Deng, Jingyu
    Fang, Yi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [36] Few-Shot Object Detection via Metric Learning
    Zhu Min
    Zhang Chongyang
    FOURTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2021), 2022, 12084
  • [37] Multiple knowledge embedding for few-shot object detection
    Gong, Xiaolin
    Cai, Youpeng
    Wang, Jian
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (05) : 2231 - 2240
  • [38] Explicit Margin Equilibrium for Few-Shot Object Detection
    Liu, Chang
    Li, Bohao
    Shi, Mengnan
    Chen, Xiaozhong
    Ye, Qixiang
    Ji, Xiangyang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [39] Restoring Negative Information in Few-Shot Object Detection
    Yang, Yukuan
    Wei, Fangyun
    Shi, Miaojing
    Li, Guoqi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [40] Few-Shot Object Detection via Knowledge Transfer
    Kim, Geonuk
    Jung, Hong-Gyu
    Lee, Seong-Whan
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 3564 - 3569