Self-supervised ensembled learning for autism spectrum classification

被引:4
|
作者
Gaur, Manu [1 ]
Chaturvedi, Kunal [3 ]
Vishwakarma, Dinesh Kumar [1 ]
Ramasamy, Savitha [2 ]
Prasad, Mukesh [3 ]
机构
[1] Delhi Technol Univ, Dept Informat Technol, Biometr Res Lab, Bawana Rd, Delhi 110042, India
[2] Agcy Sci Technol & Res, Inst Infocomm Res, Singapore, Singapore
[3] Univ Technol Sydney, Fac Engn & Informat Technol, Sch Comp Sci, Sydney 2007, Australia
关键词
Autism spectrum disorder; Self -supervised learning; Pre; -training; Classification; Ensembled learning; DISORDER; FRAMEWORK; CHILDREN;
D O I
10.1016/j.rasd.2023.102223
中图分类号
G76 [特殊教育];
学科分类号
040109 ;
摘要
Purpose: Deep learning has made remarkable progress in classifying autism spectrum disorder (ASD) using neuroimaging data. However, the current methods rely mainly on supervised learning, which requires a large amount of manually labeled data, making it an expensive and difficult task to scale.Methods: To overcome this limitation, we propose a novel ensemble-based framework that learns a transferable and generalizable visual representation from different self-supervised features for the downstream task of ASD classification. This framework dynamically learns a superior representation by aggregating complementary information in the frequency domain from independent self-supervised features with limited data. Additionally, to address the information loss caused by the dimensionality reduction of 3D fMRI data, we propose a thresholding algorithm to optimally extract the most discriminant features from 2D rs-fMRI data.Results: Experimental results demonstrate that the proposed method outperforms previous stateof-the-art methods by 19.69% on the ABIDE-1 dataset with a 10-fold cross-validation accuracy of 94.51%.Conclusion: The proposed method learns a transferrable and generalizable ensembled representation by leveraging complementary information encoded in different self-supervised representations for ASD classification.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] SELF-SUPERVISED LEARNING FOR FEW-SHOT IMAGE CLASSIFICATION
    Chen, Da
    Chen, Yuefeng
    Li, Yuhong
    Mao, Feng
    He, Yuan
    Xue, Hui
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1745 - 1749
  • [42] Imbalanced Node Classification Algorithm Based on Self-Supervised Learning
    Cui, Caixia
    Wang, Jie
    Pang, Tianjie
    Liang, Jiye
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2022, 35 (11): : 955 - 964
  • [43] Gated Self-supervised Learning for Improving Supervised Learning
    Fuadi, Erland Hillman
    Ruslim, Aristo Renaldo
    Wardhana, Putu Wahyu Kusuma
    Yudistira, Novanto
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 611 - 615
  • [44] Self-Supervised Dialogue Learning
    Wu, Jiawei
    Wang, Xin
    Wang, William Yang
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 3857 - 3867
  • [45] Self-supervised learning model
    Saga, Kazushie
    Sugasaka, Tamami
    Sekiguchi, Minoru
    Fujitsu Scientific and Technical Journal, 1993, 29 (03): : 209 - 216
  • [46] Longitudinal self-supervised learning
    Zhao, Qingyu
    Liu, Zixuan
    Adeli, Ehsan
    Pohl, Kilian M.
    MEDICAL IMAGE ANALYSIS, 2021, 71
  • [47] Credal Self-Supervised Learning
    Lienen, Julian
    Huellermeier, Eyke
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [48] Self-Supervised Learning for Recommendation
    Huang, Chao
    Xia, Lianghao
    Wang, Xiang
    He, Xiangnan
    Yin, Dawei
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 5136 - 5139
  • [49] Quantum self-supervised learning
    Jaderberg, B.
    Anderson, L. W.
    Xie, W.
    Albanie, S.
    Kiffner, M.
    Jaksch, D.
    QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (03):
  • [50] Self-Supervised Learning for Electroencephalography
    Rafiei, Mohammad H.
    Gauthier, Lynne V.
    Adeli, Hojjat
    Takabi, Daniel
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (02) : 1457 - 1471