Self-supervised ensembled learning for autism spectrum classification

被引:4
|
作者
Gaur, Manu [1 ]
Chaturvedi, Kunal [3 ]
Vishwakarma, Dinesh Kumar [1 ]
Ramasamy, Savitha [2 ]
Prasad, Mukesh [3 ]
机构
[1] Delhi Technol Univ, Dept Informat Technol, Biometr Res Lab, Bawana Rd, Delhi 110042, India
[2] Agcy Sci Technol & Res, Inst Infocomm Res, Singapore, Singapore
[3] Univ Technol Sydney, Fac Engn & Informat Technol, Sch Comp Sci, Sydney 2007, Australia
关键词
Autism spectrum disorder; Self -supervised learning; Pre; -training; Classification; Ensembled learning; DISORDER; FRAMEWORK; CHILDREN;
D O I
10.1016/j.rasd.2023.102223
中图分类号
G76 [特殊教育];
学科分类号
040109 ;
摘要
Purpose: Deep learning has made remarkable progress in classifying autism spectrum disorder (ASD) using neuroimaging data. However, the current methods rely mainly on supervised learning, which requires a large amount of manually labeled data, making it an expensive and difficult task to scale.Methods: To overcome this limitation, we propose a novel ensemble-based framework that learns a transferable and generalizable visual representation from different self-supervised features for the downstream task of ASD classification. This framework dynamically learns a superior representation by aggregating complementary information in the frequency domain from independent self-supervised features with limited data. Additionally, to address the information loss caused by the dimensionality reduction of 3D fMRI data, we propose a thresholding algorithm to optimally extract the most discriminant features from 2D rs-fMRI data.Results: Experimental results demonstrate that the proposed method outperforms previous stateof-the-art methods by 19.69% on the ABIDE-1 dataset with a 10-fold cross-validation accuracy of 94.51%.Conclusion: The proposed method learns a transferrable and generalizable ensembled representation by leveraging complementary information encoded in different self-supervised representations for ASD classification.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Conditional Self-Supervised Learning for Few-Shot Classification
    An, Yuexuan
    Xue, Hui
    Zhao, Xingyu
    Zhang, Lu
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 2140 - 2146
  • [32] Image classification framework based on contrastive self-supervised learning
    Zhao H.-W.
    Zhang J.-R.
    Zhu J.-P.
    Li H.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (08): : 1850 - 1856
  • [33] A Classification Method for Diabetic Retinopathy Based on Self-supervised Learning
    Long, Fei
    Xiong, Haoren
    Sang, Jun
    ADVANCED INTELLIGENT COMPUTING IN BIOINFORMATICS, PT I, ICIC 2024, 2024, 14881 : 347 - 357
  • [34] LFM Signal Sources Classification Based on Self-Supervised Learning
    Yang T.
    Mi S.
    Progress in Electromagnetics Research Letters, 2023, 112 : 103 - 110
  • [35] Self-Supervised Learning With Adaptive Distillation for Hyperspectral Image Classification
    Yue, Jun
    Fang, Leyuan
    Rahmani, Hossein
    Ghamisi, Pedram
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [36] Self-Supervised Learning to Increase the Performance of Skin Lesion Classification
    Kwasigroch, Arkadiusz
    Grochowski, Michal
    Mikolajczyk, Agnieszka
    ELECTRONICS, 2020, 9 (11) : 1 - 15
  • [37] Self-Supervised Learning for Seizure Classification using ECoG spectrograms
    Van Lam
    Oliugbo, Chima
    Parida, Abhijeet
    Linguraru, Marius George
    Anwar, Syed Muhammad
    COMPUTER-AIDED DIAGNOSIS, MEDICAL IMAGING 2024, 2024, 12927
  • [38] SELF-SUPERVISED LEARNING FOR CROP CLASSIFICATION USING PLANET FUSIONCaglar
    Senaras, Caglar
    Holden, Piers
    Davis, Timothy
    Rana, Akhil Singh
    Grady, Maddie
    Wania, Annett
    de Jeu, Richard
    39TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT ISRSE-39 FROM HUMAN NEEDS TO SDGS, VOL. 48-M-1, 2023, : 309 - 315
  • [39] Encrypted Network Traffic Classification using Self-supervised Learning
    Towhid, Md Shamim
    Shahriar, Nashid
    PROCEEDINGS OF THE 2022 IEEE 8TH INTERNATIONAL CONFERENCE ON NETWORK SOFTWARIZATION (NETSOFT 2022): NETWORK SOFTWARIZATION COMING OF AGE: NEW CHALLENGES AND OPPORTUNITIES, 2022, : 366 - 374
  • [40] Anomaly classification based on self-supervised learning and its application
    Han, Yongsheng
    Qi, Zhiquan
    Tian, Yingjie
    JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2024, 17 (03)