Scale-free avalanches in arrays of FitzHugh-Nagumo oscillators

被引:10
|
作者
Contreras, Max [1 ]
Medeiros, Everton S. [2 ]
Zakharova, Anna [1 ,3 ]
Hoevel, Philipp [4 ]
Franovic, Igor [5 ]
机构
[1] Tech Univ Berlin, Inst Theoret Phys, Hardenbergstr 36, D-10623 Berlin, Germany
[2] Carl von Ossietzky Univ Oldenburg, Inst Chem & Biol Marine Environm, D-26111 Oldenburg, Germany
[3] Humboldt Univ, Bernstein Ctr Computat Neurosci, Philippstr 13, D-10115 Berlin, Germany
[4] Saarland Univ, Theoret Phys & Ctr Biophys, Campus E2 6, D-66123 Saarbrucken, Germany
[5] Univ Belgrade, Inst Phys Belgrade, Ctr Study Complex Syst, Sci Comp Lab, Pregrevica 118, Belgrade 11080, Serbia
关键词
SELF-ORGANIZED CRITICALITY; NEURONAL AVALANCHES; CORTICAL NETWORKS; DYNAMICS; PATTERNS; EMERGE; RANGE;
D O I
10.1063/5.0165778
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The activity in the brain cortex remarkably shows a simultaneous presence of robust collective oscillations and neuronal avalanches, where intermittent bursts of pseudo-synchronous spiking are interspersed with long periods of quiescence. The mechanisms allowing for such coexistence are still a matter of an intensive debate. Here, we demonstrate that avalanche activity patterns can emerge in a rather simple model of an array of diffusively coupled neural oscillators with multiple timescale local dynamics in the vicinity of a canard transition. The avalanches coexist with the fully synchronous state where the units perform relaxation oscillations. We show that the mechanism behind the avalanches is based on an inhibitory effect of interactions, which may quench the spiking of units due to an interplay with the maximal canard. The avalanche activity bears certain heralds of criticality, including scale-invariant distributions of event sizes. Furthermore, the system shows increased sensitivity to perturbations, manifested as critical slowing down and reduced resilience.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] STOCHASTIC FITZHUGH-NAGUMO SYSTEMS WITH DELAY
    Xu, Lu
    Yan, Weiping
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (03): : 1079 - 1103
  • [42] FRONTS IN SUBDIFFUSIVE FITZHUGH-NAGUMO SYSTEMS
    Nepomnyashchy, A. A.
    Volpert, V. A.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2019, 14 (05)
  • [43] Spatially discrete Fitzhugh-Nagumo equations
    Elmer, CE
    Van Vleck, ES
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2005, 65 (04) : 1153 - 1174
  • [44] Heat transfer in Fitzhugh-Nagumo models
    Bini, D.
    Cherubini, C.
    Filippi, S.
    PHYSICAL REVIEW E, 2006, 74 (04):
  • [45] Electronic Model of FitzHugh-Nagumo Neuron
    Petrovas, A.
    Lisauskas, S.
    Slepikas, A.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2012, 122 (06) : 117 - 120
  • [46] Attractors for lattice FitzHugh-Nagumo systems
    Van Vleck, E
    Wang, BX
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 212 (3-4) : 317 - 336
  • [47] Numerical Simulation of the FitzHugh-Nagumo Equations
    Soliman, A. A.
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [48] Lateral overdetermination of the FitzHugh-Nagumo system
    Cox, S
    Wagner, A
    INVERSE PROBLEMS, 2004, 20 (05) : 1639 - 1647
  • [49] The stabilization of coupled FitzHugh-Nagumo system
    Yu, Xin
    Wang, Renzhi
    2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 875 - 877
  • [50] Synchronization of the coupled FitzHugh-Nagumo systems
    Uçar, A
    Lonngren, KE
    Bai, EW
    CHAOS SOLITONS & FRACTALS, 2004, 20 (05) : 1085 - 1090