Scale-free avalanches in arrays of FitzHugh-Nagumo oscillators

被引:10
|
作者
Contreras, Max [1 ]
Medeiros, Everton S. [2 ]
Zakharova, Anna [1 ,3 ]
Hoevel, Philipp [4 ]
Franovic, Igor [5 ]
机构
[1] Tech Univ Berlin, Inst Theoret Phys, Hardenbergstr 36, D-10623 Berlin, Germany
[2] Carl von Ossietzky Univ Oldenburg, Inst Chem & Biol Marine Environm, D-26111 Oldenburg, Germany
[3] Humboldt Univ, Bernstein Ctr Computat Neurosci, Philippstr 13, D-10115 Berlin, Germany
[4] Saarland Univ, Theoret Phys & Ctr Biophys, Campus E2 6, D-66123 Saarbrucken, Germany
[5] Univ Belgrade, Inst Phys Belgrade, Ctr Study Complex Syst, Sci Comp Lab, Pregrevica 118, Belgrade 11080, Serbia
关键词
SELF-ORGANIZED CRITICALITY; NEURONAL AVALANCHES; CORTICAL NETWORKS; DYNAMICS; PATTERNS; EMERGE; RANGE;
D O I
10.1063/5.0165778
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The activity in the brain cortex remarkably shows a simultaneous presence of robust collective oscillations and neuronal avalanches, where intermittent bursts of pseudo-synchronous spiking are interspersed with long periods of quiescence. The mechanisms allowing for such coexistence are still a matter of an intensive debate. Here, we demonstrate that avalanche activity patterns can emerge in a rather simple model of an array of diffusively coupled neural oscillators with multiple timescale local dynamics in the vicinity of a canard transition. The avalanches coexist with the fully synchronous state where the units perform relaxation oscillations. We show that the mechanism behind the avalanches is based on an inhibitory effect of interactions, which may quench the spiking of units due to an interplay with the maximal canard. The avalanche activity bears certain heralds of criticality, including scale-invariant distributions of event sizes. Furthermore, the system shows increased sensitivity to perturbations, manifested as critical slowing down and reduced resilience.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Chimera states in bipartite networks of FitzHugh-Nagumo oscillators
    Wu, Zhi-Min
    Cheng, Hong-Yan
    Feng, Yuee
    Li, Hai-Hong
    Dai, Qiong-Lin
    Yang, Jun-Zhong
    FRONTIERS OF PHYSICS, 2018, 13 (02)
  • [12] Numerical bifurcation analysis of two coupled FitzHugh-Nagumo oscillators
    Anderson Hoff
    Juliana V. dos Santos
    Cesar Manchein
    Holokx A. Albuquerque
    The European Physical Journal B, 2014, 87
  • [13] Synchronisation of the ensemble of nonidentical FitzHugh-Nagumo oscillators with memristive couplings
    Navrotskaya, E. V.
    Kurbako, A. V.
    Ponomarenko, V. I.
    Prokhorov, M. D.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2024, 32 (01): : 96 - 110
  • [14] Feedback controller for destroying synchrony in an array of the FitzHugh-Nagumo oscillators
    Tamasevicius, Arunas
    Tamaseviciute, Elena
    Mykolaitis, Gytis
    APPLIED PHYSICS LETTERS, 2012, 101 (22)
  • [15] The study of chaotic and regular regimes of the fractal oscillators FitzHugh-Nagumo
    Lipko, Olga
    Parovik, Roman
    IX INTERNATIONAL CONFERENCE SOLAR-TERRESTRIAL RELATIONS AND PHYSICS OF EARTHQUAKE PRECURSORS, 2018, 62
  • [16] Numerical bifurcation analysis of two coupled FitzHugh-Nagumo oscillators
    Hoff, Anderson
    dos Santos, Juliana V.
    Manchein, Cesar
    Albuquerque, Holokx A.
    EUROPEAN PHYSICAL JOURNAL B, 2014, 87 (07):
  • [17] Controlling synchrony in an array of the globally coupled FitzHugh-Nagumo type oscillators
    Adomaitiene, Elena
    Bumeliene, Skaidra
    Tamasevicius, Arunas
    PHYSICS LETTERS A, 2022, 431
  • [18] Extreme events in FitzHugh-Nagumo oscillators coupled with two time delays
    Saha, Arindam
    Feudel, Ulrike
    PHYSICAL REVIEW E, 2017, 95 (06)
  • [19] Negative Resistance Circuit for Damping an Array of Coupled FitzHugh-Nagumo Oscillators
    Tamasevicius, Arunas
    Adomaitiene, Elena
    Bumeliene, Skaidra
    Mykolaitis, Gytis
    Lindberg, Erik
    2015 EUROPEAN CONFERENCE ON CIRCUIT THEORY AND DESIGN (ECCTD), 2015, : 85 - 88
  • [20] Fluidic FitzHugh-Nagumo oscillator
    Fromm, Matthias
    Grundmann, Sven
    Seifert, Avraham
    PHYSICS OF FLUIDS, 2025, 37 (02)