Precipitate formation in cerium-modified additively manufactured AlSi10Mg alloy

被引:5
|
作者
Yakubov, Vladislav [1 ]
He, Peidong [1 ]
Kruzic, Jamie J. [1 ]
Li, Xiaopeng [1 ]
机构
[1] Univ New South Wales Unsw Sydney, Sch Mech & Mfg Engn, Sydney, NSW, Australia
基金
澳大利亚研究理事会;
关键词
Laser powder bed fusion; Additive manufacturing; Aluminium metal matrix composites; Mechanical properties; LASER MELTED ALSI10MG; MECHANICAL-PROPERTIES; RAPID SOLIDIFICATION; AL-CE; MICROSTRUCTURE; BEHAVIOR; OPTIMIZATION;
D O I
10.1080/14484846.2021.1997133
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
AlSi10Mg alloy modified with 4 wt.% cerium was fabricated by selective laser melting and subjected to a T6 solutionizing (2 h at 535 degrees C) and ageing (10 h at 160 degrees C) heat treatment. Microstructure, precipitates and hardness of as-built and heat-treated samples were analysed. Results show that as-built samples contained a refined cellular-dendritic microstructure as well as Ce-containing precipitates at heat-affected zone (HAZ). After T6 heat treatment, cellular-dendritic microstructure converted to fine microstructure containing Si agglomerates and submicron Ce-containing precipitates, while precipitates present in as-built HAZ underwent spheroidisation. Hardness testing showed that addition of Ce did not affect alloy hardness. However, the fine dispersion of Ce-containing precipitates and good coarsening resistance shows that Ce is a promising alloying element for the development of heat-resistant alloys.
引用
收藏
页码:1300 / 1310
页数:11
相关论文
共 50 条
  • [41] The effect of extrusion and aging on the mechanical properties of additively manufactured AlSi10Mg
    Ben-Artzy, A.
    Hadad, G.
    Bussiba, A.
    Nahmany, M.
    PROGRESS IN ADDITIVE MANUFACTURING, 2022, 7 (02) : 201 - 212
  • [42] Understanding fatigue crack propagation pathways in Additively Manufactured AlSi10Mg
    Rangaraj, S.
    Ahmed, S. S., I
    Davis, A.
    Withers, P. J.
    Gholinia, A.
    44TH RISO INTERNATIONAL SYMPOSIUM ON MATERIALS SCIENCE, RISO 2024, 2024, 1310
  • [43] A Study on the Compressive Behavior of Additively Manufactured AlSi10Mg Lattice Structures
    Liovic, David
    Krscanski, Sanjin
    Franulovic, Marina
    Kozak, Drazan
    Turkalj, Goran
    Vaglio, Emanuele
    Sortino, Marco
    Totis, Giovanni
    Scalzo, Federico
    Gubeljak, Nenad
    MATERIALS, 2024, 17 (21)
  • [44] Electrical resistivity of additively manufactured AlSi10Mg for use in electric motors
    Silbernagel, Cassidy
    Ashcroft, Ian
    Dickens, Phill
    Galea, Michael
    ADDITIVE MANUFACTURING, 2018, 21 : 395 - 403
  • [45] On the Zr Electrochemical Conversion of Additively Manufactured AlSi10Mg: The Role of the Microstructure
    Revilla, Reynier, I
    Rybin, Clara A.
    De Graeve, Iris
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (12)
  • [46] Metallurgical investigations of laser remelted additively manufactured AlSi10Mg parts
    Schanz, J.
    Hofele, M.
    Ruck, S.
    Schubert, T.
    Hitzler, L.
    Schneider, G.
    Merkel, M.
    Riegel, H.
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2017, 48 (05) : 463 - 476
  • [47] The effect of texture on the anisotropy of thermophysical properties of additively manufactured AlSi10Mg
    Strumza, Einat
    Yeheskel, Ori
    Hayun, Shmuel
    ADDITIVE MANUFACTURING, 2019, 29
  • [48] The effect of extrusion and aging on the mechanical properties of additively manufactured AlSi10Mg
    A. Ben-Artzy
    G. Hadad
    A. Bussiba
    M. Nahmany
    Progress in Additive Manufacturing, 2022, 7 : 201 - 212
  • [49] Effects of process parameters on strengthening mechanisms of additively manufactured AlSi10Mg
    Gokdag, Istemihan
    Acar, Erdem
    MATERIALS TESTING, 2023, 65 (03) : 409 - 422
  • [50] Influence of anisotropy of additively manufactured AlSi10Mg parts on chip formation during orthogonal cutting
    Segebade, Eric
    Gerstenmeyer, Michael
    Dietrich, Stefan
    Zanger, Frederik
    Schulze, Volker
    17TH CIRP CONFERENCE ON MODELLING OF MACHINING OPERATIONS (17TH CIRP CMMO), 2019, 82 : 113 - 118