Precipitate formation in cerium-modified additively manufactured AlSi10Mg alloy

被引:5
|
作者
Yakubov, Vladislav [1 ]
He, Peidong [1 ]
Kruzic, Jamie J. [1 ]
Li, Xiaopeng [1 ]
机构
[1] Univ New South Wales Unsw Sydney, Sch Mech & Mfg Engn, Sydney, NSW, Australia
基金
澳大利亚研究理事会;
关键词
Laser powder bed fusion; Additive manufacturing; Aluminium metal matrix composites; Mechanical properties; LASER MELTED ALSI10MG; MECHANICAL-PROPERTIES; RAPID SOLIDIFICATION; AL-CE; MICROSTRUCTURE; BEHAVIOR; OPTIMIZATION;
D O I
10.1080/14484846.2021.1997133
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
AlSi10Mg alloy modified with 4 wt.% cerium was fabricated by selective laser melting and subjected to a T6 solutionizing (2 h at 535 degrees C) and ageing (10 h at 160 degrees C) heat treatment. Microstructure, precipitates and hardness of as-built and heat-treated samples were analysed. Results show that as-built samples contained a refined cellular-dendritic microstructure as well as Ce-containing precipitates at heat-affected zone (HAZ). After T6 heat treatment, cellular-dendritic microstructure converted to fine microstructure containing Si agglomerates and submicron Ce-containing precipitates, while precipitates present in as-built HAZ underwent spheroidisation. Hardness testing showed that addition of Ce did not affect alloy hardness. However, the fine dispersion of Ce-containing precipitates and good coarsening resistance shows that Ce is a promising alloying element for the development of heat-resistant alloys.
引用
收藏
页码:1300 / 1310
页数:11
相关论文
共 50 条
  • [21] Development of a Novel Laser Polishing Strategy for Additively Manufactured AlSi10Mg Alloy Parts
    Ben Mason
    Ryan, Michael
    Setchi, Rossi
    Kundu, Abhishek
    Ayre, Wayne Nishio
    Bhaduri, Debajyoti
    SUSTAINABLE DESIGN AND MANUFACTURING, SDM 2022, 2023, 338 : 272 - 282
  • [22] Anisotropy of additively manufactured AlSi10Mg: threads and surface integrity
    Rizwan Ullah
    Jan Sher Akmal
    Sampsa V. A. Laakso
    Esko Niemi
    The International Journal of Advanced Manufacturing Technology, 2020, 107 : 3645 - 3662
  • [23] Relationship between ductility and the porosity of additively manufactured AlSi10Mg
    Laursen, Christopher M.
    DeJong, Stephanie A.
    Dickens, Sara M.
    Exil, Andrea N.
    Susan, Donald F.
    Carroll, Jay D.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 795
  • [24] Tensile and compressive behaviour of additively manufactured AlSi10Mg samples
    Enes Sert
    L. Hitzler
    S. Hafenstein
    M. Merkel
    E. Werner
    A. Öchsner
    Progress in Additive Manufacturing, 2020, 5 : 305 - 313
  • [25] Tensile and compressive behaviour of additively manufactured AlSi10Mg samples
    Sert, Enes
    Hitzler, L.
    Hafenstein, S.
    Merkel, M.
    Werner, E.
    Oechsner, A.
    PROGRESS IN ADDITIVE MANUFACTURING, 2020, 5 (03) : 305 - 313
  • [26] Anisotropy reduction of additively manufactured AlSi10Mg for metal mirrors
    Tan, Songnian
    Wang, Yefei
    Liu, Weiyi
    Wang, Hao
    Jia, Ping
    Ding, Yalin
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (25) : 11934 - 11948
  • [27] Anisotropy of additively manufactured AlSi10Mg: threads and surface integrity
    Ullah, Rizwan
    Akmal, Jan Sher
    Laakso, Sampsa V. A.
    Niemi, Esko
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2020, 107 (9-10): : 3645 - 3662
  • [28] Anisotropy reduction of additively manufactured AlSi10Mg for metal mirrors
    Songnian Tan
    Yefei Wang
    Weiyi Liu
    Hao Wang
    Ping Jia
    Yalin Ding
    Journal of Materials Science, 2022, 57 : 11934 - 11948
  • [29] Nondestructive ultrasonic evaluation of additively manufactured AlSi10Mg samples
    Sol, T.
    Hayun, S.
    Noiman, D.
    Tiferet, E.
    Yeheskel, O.
    Tevet, O.
    ADDITIVE MANUFACTURING, 2018, 22 : 700 - 707
  • [30] Characterization of additively manufactured AlSi10Mg cubes with different porosities
    Taute, C.
    Moller, H.
    du Plessis, A.
    Tshibalanganda, M.
    Leary, M.
    JOURNAL OF THE SOUTHERN AFRICAN INSTITUTE OF MINING AND METALLURGY, 2021, 121 (04) : 143 - 150