Balanced harvesting of dynamical discrete Ricker & Beverton-Holt system

被引:2
|
作者
Ouyang, Miao [1 ,2 ]
Zhang, Qianhong [3 ]
Chen, Zili [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Math, Chengdu 610000, Sichuan, Peoples R China
[2] Xiamen Univ Technol, Sch Math & Stat, Xiamen 361000, Fujian, Peoples R China
[3] Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang 550025, Guizhou, Peoples R China
关键词
Ricker & Beverton-Holt model; Difference equation system; Equilibrium point; Boundedness; Persistence; Globally asymptotic stability; IMPLIES GLOBAL STABILITY; LIFE-HISTORY; RECRUITMENT; BEHAVIOR; MODEL;
D O I
10.1016/j.chaos.2023.113384
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss a dynamic version of the Ricker & Beverton-Holt (R & B-H)model, which states a two populations commercial fishery, where stock-recruitment effects cannot be neglected. We investigate a stable and balanced fish catches strategy that local breeding stocks are preserved abundant and stable. The Ricker & Beverton-Holt model in commercial fishery, based on the Allee effect, is combined by Beverton-Holt Logistic equation and Ricker model, ������������+1 = ������������������ ������ 1 + ������������������ -������������ ������������������ , ������������+1= ������-������������. 1 + ������������������ where the parameters ������, ������, ������, ������, are positive real numbers and the initial values ������0, ������0 are arbitrary nonnegative real numbers. Using the mean value theorem and Lyapunov functional skills, we obtain the sufficient conditions to guarantee the bounded and persistent solution of the Ricker & Beverton-Holt model, and global asymptotic stability of the equilibrium. Moreover, three numerical examples are given to elaborate on the results.
引用
收藏
页数:7
相关论文
共 50 条