Balanced harvesting of dynamical discrete Ricker & Beverton-Holt system

被引:2
|
作者
Ouyang, Miao [1 ,2 ]
Zhang, Qianhong [3 ]
Chen, Zili [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Math, Chengdu 610000, Sichuan, Peoples R China
[2] Xiamen Univ Technol, Sch Math & Stat, Xiamen 361000, Fujian, Peoples R China
[3] Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang 550025, Guizhou, Peoples R China
关键词
Ricker & Beverton-Holt model; Difference equation system; Equilibrium point; Boundedness; Persistence; Globally asymptotic stability; IMPLIES GLOBAL STABILITY; LIFE-HISTORY; RECRUITMENT; BEHAVIOR; MODEL;
D O I
10.1016/j.chaos.2023.113384
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss a dynamic version of the Ricker & Beverton-Holt (R & B-H)model, which states a two populations commercial fishery, where stock-recruitment effects cannot be neglected. We investigate a stable and balanced fish catches strategy that local breeding stocks are preserved abundant and stable. The Ricker & Beverton-Holt model in commercial fishery, based on the Allee effect, is combined by Beverton-Holt Logistic equation and Ricker model, ������������+1 = ������������������ ������ 1 + ������������������ -������������ ������������������ , ������������+1= ������-������������. 1 + ������������������ where the parameters ������, ������, ������, ������, are positive real numbers and the initial values ������0, ������0 are arbitrary nonnegative real numbers. Using the mean value theorem and Lyapunov functional skills, we obtain the sufficient conditions to guarantee the bounded and persistent solution of the Ricker & Beverton-Holt model, and global asymptotic stability of the equilibrium. Moreover, three numerical examples are given to elaborate on the results.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] BEVERTON-HOLT MODEL OF A COMMERCIAL FISHERY - OPTIMAL DYNAMICS
    CLARK, C
    EDWARDS, G
    FRIEDLAE.M
    JOURNAL OF THE FISHERIES RESEARCH BOARD OF CANADA, 1973, 30 (11): : 1629 - 1640
  • [32] A stochastic modified Beverton-Holt model with the Allee effect
    Assas, Laila
    Dennis, Brian
    Elaydi, Saber
    Kwessi, Eddy
    Livadiotis, George
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2016, 22 (01) : 37 - 54
  • [33] Resonance and attenuation in the n-periodic Beverton-Holt equation
    Yang, Yi
    Sacker, Robert J.
    Haskell, Cymra
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2013, 19 (07) : 1174 - 1191
  • [34] Global attractor and its 1D and 2D structures of Beverton-Holt Ricker competition model
    Cheng, Qi
    Zhang, Jun
    Zhang, Weinian
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 470
  • [35] PERIODIC DYNAMICS OF A SINGLE-SPECIES POPULATION MODEL BASED ON THE DISCRETE BEVERTON-HOLT EQUATION
    Zheng, Bo
    Zhou, Hongling
    Yu, Jianshe
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024,
  • [36] Beverton-Holt discrete pest management models with pulsed chemical control and evolution of pesticide resistance
    Liang, Juhua
    Tang, Sanyi
    Cheke, Robert A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 36 : 327 - 341
  • [37] The Beverton-Holt Equation from a Control Theory Point of View
    De La Sen, M.
    Alonso-Quesada, S.
    Bilbao-Guillerna, A.
    2008 2ND IEEE INTERNATIONAL CONFERENCE ON DIGITAL ECOSYSTEMS AND TECHNOLOGIES, 2008, : 361 - 368
  • [38] Revisiting Beverton-Holt recruitment in the presence of variation in food availability
    van Poorten, Brett
    Korman, Josh
    Walters, Carl
    REVIEWS IN FISH BIOLOGY AND FISHERIES, 2018, 28 (03) : 607 - 624
  • [39] Selectivity, Pulse Fishing and Endogenous Lifespan in Beverton-Holt Models
    Da Rocha, Jose-Maria
    Gutierrez, Maria-Jose
    Antelo, Luis T.
    ENVIRONMENTAL & RESOURCE ECONOMICS, 2013, 54 (01): : 139 - 154
  • [40] On an Extended Time-Varying Beverton-Holt Equation Subject to Harvesting Monitoring and Population Excess Penalty
    De la Sen, Manuel
    Alonso-Quesada, Santiago
    Ibeas, Asier
    Garrido, Aitor J.
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2023, 2023