Investigation of an ejector-cascaded vapor compression-absorption refrigeration cycle powered by linear fresnel and organic rankine cycle

被引:9
|
作者
Askari, Ighball Baniasad [1 ]
Ghazizade-Ahsaee, Hossein [2 ]
Kasaeian, Alibakhsh [3 ]
机构
[1] Univ Zabol, Fac Engn, Dept Mech Engn, Zabol, Iran
[2] Tech & Vocat Univ TVU, Dept Mech Engn, Tehran, Iran
[3] Univ Tehran, Fac New Sci & Technol, Dept Renewable Energies & Environm, Tehran, Iran
关键词
Cascade refrigeration; Food storage; Solar field; Thermal energy storage; Thermoelectric; Ejector; THERMOELECTRIC GENERATOR; COOLING SYSTEM; PERFORMANCE-CHARACTERISTICS; THERMOECONOMIC ANALYSIS; FINANCIAL EVALUATION; BIOENERGY INDUSTRY; ECONOMIC-ANALYSIS; EXERGY ANALYSIS; SOLAR; ENERGY;
D O I
10.1007/s10668-022-02442-z
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The low-temperature cooling through the cascade compression-absorption refrigeration system with the solar thermal source is a promising technology to be used in food storage applications. This paper studies an integrated organic rankine cycle (ORC, toluene)/ejector-cascade compression (R1234yf)-absorption (LiBr-H2O) refrigeration system/thermo-electric generator (TEG) powered by the linear Fresnel solar collectors. The power generation of the ORC and TEGs was assumed to supply the electricity consumption of the system. A thermo-economic analysis was performed to determine the influence of different parameters on the system performance, heat transfer areas, solar field, and thermal energy storage (TES) system optimum sizes, and the levelized cost of the cooling energy (COC). The calculations were conducted for three locations to specify the influence of solar radiation level on the system sizes and COC. Based on the results, the energy and exergy efficiencies (eta(I) and eta(II)) vary from 38 to 50% and from 3.6 to 4.6%, respectively. Although the capital investment and complexity are the practical limitations, the cascade cycle coefficient of performance and the system overall efficiency improvement were obtained as 27.02% and 51.19%% over the cycle without ejector and TEG reported in the previous research studies. Also, for three locations with highest, medium, and lowest solar radiation levels, the minimum COC (and annual solar share) was obtained as 0.049-0.062 $/kWh (36-74%), 0.068-0.079 $/kWh (32-55%), and 0.145-0.158 $/kWh (18-27%), respectively, for different TES capacities and capital costs. Moreover, the TEG modules are capable of supplying nearly 27% of the total power consumption of the system. For two regions located in Iran and United Arab Emirates, the COC of the fuel-based system becomes equal to that of the solar-based system if the conventional fuel prices in United Arab Emirates and Iran are increased by 202% and 316%, respectively.
引用
收藏
页码:9439 / 9484
页数:46
相关论文
共 50 条
  • [31] Energy and Exergy Analysis of Combined Organic Rankine Cycle-Single and Dual Evaporator Vapor Compression Refrigeration Cycle
    Pektezel, Oguzhan
    Acar, Halil Ibrahim
    APPLIED SCIENCES-BASEL, 2019, 9 (23):
  • [32] A novel organic Rankine cycle-ejector booster refrigeration cycle for low-temperature sources
    Hacipasaoglu, Servet Giray
    APPLIED THERMAL ENGINEERING, 2025, 266
  • [33] A novel configuration of ejector refrigeration cycle coupled with organic Rankine cycle for transformer and space cooling applications
    Sanaye, Sepehr
    Refahi, Amirhossein
    INTERNATIONAL JOURNAL OF REFRIGERATION, 2020, 115 : 191 - 208
  • [34] Working fluid selection for a high efficiency integrated power/cooling system combining an organic Rankine cycle and vapor compression-absorption cycles
    Ngangu, Max Ndame
    Lekan, Nelson Nguefack
    Njock, Julbin Paul
    Sosso, Olivier Thierry
    Stouffs, Pascal
    ENERGY, 2023, 277
  • [35] Solar powered combined ejector vapour compression cycle for air conditioning and refrigeration
    Sun, DW
    ENERGY CONVERSION AND MANAGEMENT, 1997, 38 (05) : 479 - 491
  • [36] Optimization analysis of Organic Rankine Cycle powered by waste heat of a supermarket transcritical CO2 multi-ejector refrigeration cycle
    Tsimpoukis, Dimitrios
    Syngounas, Evangelos
    Bellos, Evangelos
    Koukou, Maria
    Tzivanidis, Christos
    Anagnostatos, Stavros
    Vrachopoulos, Michail Gr
    JOURNAL OF CLEANER PRODUCTION, 2023, 418
  • [37] Exergy analysis of vapour compression-absorption two-stage refrigeration cycle
    Ozturk, Ilhan Tekin
    Cimsit, Canan
    INTERNATIONAL JOURNAL OF EXERGY, 2021, 35 (02) : 210 - 221
  • [38] Energetic and exergetic investigation on a solar powered integrated system of ejector refrigeration cycle and Kalina cycle
    Alazazmeh, Ayman J.
    Khaliq, Abdul
    Shivlal
    INTERNATIONAL JOURNAL OF EXERGY, 2022, 39 (04) : 361 - 376
  • [39] Thermodynamic investigation of integrated organic Rankine cycle-ejector vapor compression cooling cycle waste heat recovery configurations for cooling, heating and power production
    Braimakis, Konstantinos
    Karellas, Sotirios
    ENERGY, 2024, 304
  • [40] Thermodynamic analysis of a novel Ejector Enhanced Vapor Compression Refrigeration (EEVCR) cycle
    Elakhdar, M.
    Tashtoush, B. M.
    Nehdi, E.
    Kairouani, L.
    ENERGY, 2018, 163 : 1217 - 1230