Short-Term Load Forecasting in Power System Using CNN-LSTM Neural Network

被引:0
|
作者
Truong Hoang Bao Huy [1 ]
Dieu Ngoc Vo [2 ]
Khai Phuc Nguyen [2 ]
Viet Quoc Huynh [2 ]
Minh Quang Huynh [2 ]
Khoa Hoang Truong [2 ]
机构
[1] Soonchunhyang Univ, Dept Future Convergence Technol, Asan, Chuncheongnam D, South Korea
[2] Vietnam Natl Univ Ho Chi Minh City, Ho Chi Minh City Univ Technol HCMUT, Dept Power Syst, Ho Chi Minh City, Vietnam
关键词
Short-term load forecasting; CNN-LSTM; Long; Short-Term Memory; Convolutional Neural Networks;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The accurate forecasting of short-term load plays a significant role in power systems operation and planning. This paper suggests a short-term load forecasting model combining Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM). The developed CNN-LSTM aims to capture both spatial and temporal dependencies within the load data, leveraging the strengths of both architectures. Simulations are performed using real-world power system load data. Comparative analyses are carried out against standalone CNN and LSTM models. The CNN-LSTM has significantly better forecasting accuracy than other models, showcasing its effectiveness in shortterm load forecasting.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] SHORT-TERM LOAD FORECASTING USING AN ADAPTIVE NEURAL NETWORK
    DILLON, TS
    SESTITO, S
    LEUNG, S
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 1991, 13 (04) : 186 - 192
  • [32] Short-term load forecasting using Fuzzy Neural Network
    Shao, S
    Sun, YM
    FOURTH INTERNATIONAL CONFERENCE ON ADVANCES IN POWER SYSTEM CONTROL, OPERATION & MANAGEMENT, VOLS 1 AND 2, 1997, : 131 - 134
  • [33] Short-term load forecasting of power system based on improved bp neural network
    Li S.
    International Journal of Circuits, Systems and Signal Processing, 2020, 14 : 840 - 846
  • [34] Short-Term Photovoltaic Power Forecasting Using an LSTM Neural Network and Synthetic Weather Forecast
    Hossain, Mohammad Safayet
    Mahmood, Hisham
    IEEE ACCESS, 2020, 8 (08): : 172524 - 172533
  • [35] Bivariate Short-term Electric Power Forecasting using LSTM Network
    Din, Asim Zaheer Ud
    Ayaz, Yasar
    Hasan, Momena
    Khan, Jawad
    Salman, Muhammad
    2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION IN INDUSTRY (ICRAI), 2019,
  • [36] A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data
    Bogaerts, Toon
    Masegosa, Antonio D.
    Angarita-Zapata, Juan S.
    Onieva, Enrique
    Hellinckx, Peter
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2020, 112 : 62 - 77
  • [37] Short-Term Load Forecasting for a Captive Power Plant Using Artificial Neural Network
    Tiwari, Vidhi
    Pal, Kirti
    INTERNATIONAL JOURNAL OF INFORMATION RETRIEVAL RESEARCH, 2022, 12 (01)
  • [38] Arctic short-term wind speed forecasting based on CNN-LSTM model with CEEMDAN
    Li, Qingyang
    Wang, Guosong
    Wu, Xinrong
    Gao, Zhigang
    Dan, Bo
    ENERGY, 2024, 299
  • [39] Short-Term Load Forecasting Based on Deep Learning Bidirectional LSTM Neural Network
    Cai, Changchun
    Tao, Yuan
    Zhu, Tianqi
    Deng, Zhixiang
    APPLIED SCIENCES-BASEL, 2021, 11 (17):
  • [40] A Short-Term Load Forecasting Model of LSTM Neural Network considering Demand Response
    Guo, Xifeng
    Zhao, Qiannan
    Wang, Shoujin
    Shan, Dan
    Gong, Wei
    COMPLEXITY, 2021, 2021