Short-Term Load Forecasting in Power System Using CNN-LSTM Neural Network

被引:0
|
作者
Truong Hoang Bao Huy [1 ]
Dieu Ngoc Vo [2 ]
Khai Phuc Nguyen [2 ]
Viet Quoc Huynh [2 ]
Minh Quang Huynh [2 ]
Khoa Hoang Truong [2 ]
机构
[1] Soonchunhyang Univ, Dept Future Convergence Technol, Asan, Chuncheongnam D, South Korea
[2] Vietnam Natl Univ Ho Chi Minh City, Ho Chi Minh City Univ Technol HCMUT, Dept Power Syst, Ho Chi Minh City, Vietnam
关键词
Short-term load forecasting; CNN-LSTM; Long; Short-Term Memory; Convolutional Neural Networks;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The accurate forecasting of short-term load plays a significant role in power systems operation and planning. This paper suggests a short-term load forecasting model combining Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM). The developed CNN-LSTM aims to capture both spatial and temporal dependencies within the load data, leveraging the strengths of both architectures. Simulations are performed using real-world power system load data. Comparative analyses are carried out against standalone CNN and LSTM models. The CNN-LSTM has significantly better forecasting accuracy than other models, showcasing its effectiveness in shortterm load forecasting.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] A Hybrid System Based on LSTM for Short-Term Power Load Forecasting
    Jin, Yu
    Guo, Honggang
    Wang, Jianzhou
    Song, Aiyi
    ENERGIES, 2020, 13 (23)
  • [22] A short-term load forecasting model of multi-scale CNN-LSTM hybrid neural network considering the real-time electricity price
    Guo, Xifeng
    Zhao, Qiannan
    Zheng, Di
    Ning, Yi
    Gao, Ye
    ENERGY REPORTS, 2020, 6 : 1046 - 1053
  • [23] Short-Term Residential Load Forecasting Based on LSTM Recurrent Neural Network
    Kong, Weicong
    Dong, Zhao Yang
    Jia, Youwei
    Hill, David J.
    Xu, Yan
    Zhang, Yuan
    IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (01) : 841 - 851
  • [24] Short-term load forecasting based on MB-LSTM neural network
    Cai, Changchun
    Tao, Yuan
    Ren, Qiwen
    Hu, Gang
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 5402 - 5406
  • [25] Short-Term Load Forecasting Based on PSO-KFCM Daily Load Curve Clustering and CNN-LSTM Model
    Shang, Chuan
    Gao, Junwei
    Liu, Huabo
    Liu, Fuzheng
    IEEE ACCESS, 2021, 9 : 50344 - 50357
  • [26] Improving Short-term Daily Streamflow Forecasting Using an Autoencoder Based CNN-LSTM Model
    Kumshe, Umar Muhammad Mustapha
    Abdulhamid, Zakariya Muhammad
    Mala, Baba Ahmad
    Muazu, Tasiu
    Muhammad, Abdullahi Uwaisu
    Sangary, Ousmane
    Ba, Abdoul Fatakhou
    Tijjani, Sani
    Adam, Jibril Muhammad
    Ali, Mosaad Ali Hussein
    Bello, Aliyu Uthman
    Bala, Muhammad Muhammad
    WATER RESOURCES MANAGEMENT, 2024, 38 (15) : 5973 - 5989
  • [27] Ultra-short-term Power Load Forecasting Based on Cluster Empirical Mode Decomposition of CNN-LSTM
    Liu Y.
    Zhao Q.
    Dianwang Jishu/Power System Technology, 2021, 45 (11): : 4444 - 4451
  • [28] Short-Term Load Forecasting Using Artificial Neural Network
    Buhari, Muhammad
    Adamu, Sanusi Sani
    INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, IMECS 2012, VOL I, 2012, : 83 - 88
  • [29] Short-Term Load Forecasting Using Hybrid Neural Network
    Nadeem, Muhammad
    Altaf, Muhammad
    Ahmad, Ayaz
    INTERNATIONAL JOURNAL OF APPLIED METAHEURISTIC COMPUTING, 2021, 12 (01) : 142 - 156
  • [30] SHORT-TERM LOAD FORECASTING USING AN ARTIFICIAL NEURAL NETWORK
    LEE, KY
    CHA, YT
    PARK, JH
    KURZYN, MS
    PARK, DC
    MOHAMMED, OA
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1992, 7 (01) : 124 - 132