End-to-End Deep Learning of Joint Geometric Probabilistic Shaping Using a Channel-Sensitive Autoencoder

被引:2
|
作者
Li, Yuzhe [1 ,2 ]
Chang, Huan [3 ,4 ]
Gao, Ran [3 ,4 ]
Zhang, Qi [1 ,2 ,5 ]
Tian, Feng [1 ,2 ,5 ]
Yao, Haipeng [6 ]
Tian, Qinghua [1 ,2 ,5 ]
Wang, Yongjun [1 ,2 ,5 ]
Xin, Xiangjun [3 ,4 ]
Wang, Fu [1 ,2 ,5 ]
Rao, Lan [1 ,2 ,5 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Elect Engn, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Beijing Key Lab Space Ground Interconnect & Conver, Beijing 100876, Peoples R China
[3] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[4] Beijing Inst Technol, Minist Ind & Informat Technol, Key Lab Photon Informat Technol, Beijing 100081, Peoples R China
[5] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[6] Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
基金
国家重点研发计划;
关键词
end-to-end deep learning (E2EDL); channel-sensitive autoencoder (CSAE); channel modeling; probabilistic shaping; geometric shaping; NEURAL-NETWORK;
D O I
10.3390/electronics12204234
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose an innovative channel-sensitive autoencoder (CSAE)-aided end-to-end deep learning (E2EDL) technique for joint geometric probabilistic shaping. The pretrained conditional generative adversarial network (CGAN) is introduced in the CSAE which performs differentiable substitution of the optical fiber channel model under variable input optical power (IOP) levels. This enables the CSAE-aided E2EDL to design optimal joint geometric probabilistic shaping schemes for optical fiber communication systems at varying IOPs. The results of the proposed CSAE-aided E2EDL technique show that for a dual-polarization 64-Gbaud signal with a transmission distance of 5 x 80 km, when the modulation format is a 64-quadrature amplitude modulation (QAM) or a 128-QAM, the maximum generalized mutual information (GMI) level learned via CSAE-aided E2EDL is 5.9826 or 6.8384 bits/symbol under varying IOPs, respectively. In addition, the pretrained CGAN, as a substitution for optical fiber transmission model, accurately characterizes the distortion of signals with different IOPs, with an average bit error ratio (BER) difference of only 1.83%, an average mean square error (MSE) of 0.0041 and an average K-L divergence of 0.0046. In summary, this paper delivers new insights into the application of E2EDL and demonstrates the feasibility of joint geometric probabilistic shaping-based E2EDL for fiber optic communication systems with varying IOPs.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] End-to-end deep learning with neuromorphic photonics
    Dabos, G.
    Mourgias-Alexandris, G.
    Totovic, A.
    Kirtas, M.
    Passalis, N.
    Tefas, A.
    Pleros, N.
    INTEGRATED OPTICS: DEVICES, MATERIALS, AND TECHNOLOGIES XXV, 2021, 11689
  • [32] End-to-End Optimization of Deep Learning Applications
    Sohrabizadeh, Atefeh
    Wang, Jie
    Cong, Jason
    2020 ACM/SIGDA INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE GATE ARRAYS (FPGA '20), 2020, : 133 - 139
  • [33] Spline Filters For End-to-End Deep Learning
    Balestriero, Randall
    Cosentino, Romain
    Glotin, Herve
    Baraniuk, Richard
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [34] End-to-end Deep Learning of Optimization Heuristics
    Cummins, Chris
    Petoumenos, Pavlos
    Wang, Zheng
    Leather, Hugh
    2017 26TH INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT), 2017, : 219 - 232
  • [35] Classification of ALS Point Clouds Using End-to-End Deep Learning
    Winiwarter, Lukas
    Mandiburger, Gottfried
    Schmohl, Stefan
    Pfeifer, Norbert
    PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2019, 87 (03): : 75 - 90
  • [36] FinSNet: End-to-End Separation of Overlapped Fingerprints Using Deep Learning
    Yoo, Dongheon
    Cho, Jaebum
    Lee, Juhyun
    Chae, Minseok
    Lee, Byounghyo
    Lee, Byoungho
    IEEE ACCESS, 2020, 8 : 209020 - 209029
  • [37] Agile Autonomous Driving using End-to-End Deep Imitation Learning
    Pan, Yunpeng
    Cheng, Ching-An
    Saigol, Kamil
    Lee, Keuntaek
    Yan, Xinyan
    Theodorou, Evangelos A.
    Boots, Byron
    ROBOTICS: SCIENCE AND SYSTEMS XIV, 2018,
  • [38] An end-to-end approach to autonomous vehicle control using deep learning
    Magera Novello, Gustavo Antonio
    Yamamoto, Henrique Yda
    Lustosa Cabral, Eduardo Lobo
    REVISTA BRASILEIRA DE COMPUTACAO APLICADA, 2021, 13 (03): : 32 - 41
  • [39] Classification of ALS Point Clouds Using End-to-End Deep Learning
    Lukas Winiwarter
    Gottfried Mandlburger
    Stefan Schmohl
    Norbert Pfeifer
    PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2019, 87 : 75 - 90
  • [40] Probabilistic Bounds on the End-to-End Delay of Service Function Chains using Deep MDN
    Raeis, Majid
    Tizghadam, Ali
    Leon-Garcia, Alberto
    2020 IEEE 31ST ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (IEEE PIMRC), 2020,