End-to-End Deep Learning of Joint Geometric Probabilistic Shaping Using a Channel-Sensitive Autoencoder

被引:2
|
作者
Li, Yuzhe [1 ,2 ]
Chang, Huan [3 ,4 ]
Gao, Ran [3 ,4 ]
Zhang, Qi [1 ,2 ,5 ]
Tian, Feng [1 ,2 ,5 ]
Yao, Haipeng [6 ]
Tian, Qinghua [1 ,2 ,5 ]
Wang, Yongjun [1 ,2 ,5 ]
Xin, Xiangjun [3 ,4 ]
Wang, Fu [1 ,2 ,5 ]
Rao, Lan [1 ,2 ,5 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Elect Engn, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Beijing Key Lab Space Ground Interconnect & Conver, Beijing 100876, Peoples R China
[3] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[4] Beijing Inst Technol, Minist Ind & Informat Technol, Key Lab Photon Informat Technol, Beijing 100081, Peoples R China
[5] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[6] Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
基金
国家重点研发计划;
关键词
end-to-end deep learning (E2EDL); channel-sensitive autoencoder (CSAE); channel modeling; probabilistic shaping; geometric shaping; NEURAL-NETWORK;
D O I
10.3390/electronics12204234
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose an innovative channel-sensitive autoencoder (CSAE)-aided end-to-end deep learning (E2EDL) technique for joint geometric probabilistic shaping. The pretrained conditional generative adversarial network (CGAN) is introduced in the CSAE which performs differentiable substitution of the optical fiber channel model under variable input optical power (IOP) levels. This enables the CSAE-aided E2EDL to design optimal joint geometric probabilistic shaping schemes for optical fiber communication systems at varying IOPs. The results of the proposed CSAE-aided E2EDL technique show that for a dual-polarization 64-Gbaud signal with a transmission distance of 5 x 80 km, when the modulation format is a 64-quadrature amplitude modulation (QAM) or a 128-QAM, the maximum generalized mutual information (GMI) level learned via CSAE-aided E2EDL is 5.9826 or 6.8384 bits/symbol under varying IOPs, respectively. In addition, the pretrained CGAN, as a substitution for optical fiber transmission model, accurately characterizes the distortion of signals with different IOPs, with an average bit error ratio (BER) difference of only 1.83%, an average mean square error (MSE) of 0.0041 and an average K-L divergence of 0.0046. In summary, this paper delivers new insights into the application of E2EDL and demonstrates the feasibility of joint geometric probabilistic shaping-based E2EDL for fiber optic communication systems with varying IOPs.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Fast ultrasonic imaging using end-to-end deep learning
    Pilikos, Georgios
    Horchens, Lars
    Batenburg, Kees Joost
    van Leeuwen, Tristan
    Lucka, Felix
    PROCEEDINGS OF THE 2020 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2020,
  • [22] Deep Reinforcement Learning Based End-to-End Multiuser Channel Prediction and Beamforming
    Chu, Man
    Liu, An
    Lau, Vincent K. N.
    Jiang, Chen
    Yang, Tingting
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (12) : 10271 - 10285
  • [23] Deep Joint Source-Channel Coding for CSI Feedback: An End-to-End Approach
    Xu, Jialong
    Ai, Bo
    Wang, Ning
    Chen, Wei
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (01) : 260 - 273
  • [24] Structured Probabilistic End-to-End Learning from Crowds
    Chen, Zhijun
    Wang, Huimin
    Sun, Hailong
    Chen, Pengpeng
    Han, Tao
    Liu, Xudong
    Yang, Jie
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 1512 - 1518
  • [25] End-to-end learning strategy with channel-aided polar autoencoder in IM/DD optical interconnection
    Mu, Yujia
    He, Hailian
    Ming, Jun
    Song, Junyuan
    Xu, Qi
    Gao, Ran
    Li, Zhipei
    Xin, Xiangjun
    Dong, Ze
    OPTICS EXPRESS, 2024, 32 (22): : 39727 - 39733
  • [26] End-to-end time-dependent probabilistic assessment of landslide hazards using hybrid deep learning simulator
    Huang, Menglu
    Nishimura, Shin-ichi
    Shibata, Toshifumi
    Wang, Ze Zhou
    COMPUTERS AND GEOTECHNICS, 2025, 178
  • [27] End-to-End Deep Learning-Based Human Activity Recognition Using Channel State Information
    Hsieh, Chaur-Heh
    Chen, Jen-Yang
    Kuo, Chung-Ming
    Wang, Ping
    JOURNAL OF INTERNET TECHNOLOGY, 2021, 22 (02): : 271 - 281
  • [28] End-to-End Deep Learning for Long-haul Fiber Transmission Using Differentiable Surrogate Channel
    Niu, Zekun
    Yang, Hang
    Zhao, Haochen
    Dai, Chenhao
    Hu, Weisheng
    Yi, Lilin
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2022, 40 (09) : 2807 - 2822
  • [29] Joint Learning of Geometric and Probabilistic Constellation Shaping
    Stark, Maximilian
    Aoudia, Faycal Ait
    Hoydis, Jakob
    2019 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2019,
  • [30] End-to-End Deep Learning for Robotic Following
    Pierre, John M.
    ICMSCE 2018: PROCEEDINGS OF THE 2018 2ND INTERNATIONAL CONFERENCE ON MECHATRONICS SYSTEMS AND CONTROL ENGINEERING, 2015, : 77 - 85