MagicCubePose, A more comprehensive 6D pose estimation network

被引:0
|
作者
Li, Fudong [1 ]
Gao, Dongyang [1 ]
Huang, Qiang [1 ]
Li, Wei [1 ]
Yang, Yuequan [1 ]
机构
[1] Yangzhou Univ, Coll Informat Engn, Artificial Intelligence Coll, Yangzhou 225000, Jiangsu, Peoples R China
关键词
D O I
10.1038/s41598-023-32936-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Most of the current mainstream 6D pose estimation methods use template or voting-based methods. Such methods are usually multi-stage or have multiple assumptions and post-correction, which will cause a certain degree of information redundancy and increase the computational cost, their real-time detection performance is poor. We point out that traditional path aggregation networks introduce new errors, therefore, we propose a loss function: MagicCubeLoss, a portable module: MagicCubeNet, and the corresponding 6D pose estimation model: MagicCubePose. MagicCubePose has good expansion performance and can build more efficient models for different calculation power and scenarios. Experiments show that our model has good real-time detection performance and the highest ADD(-S) accuracy.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Confidence-Based 6D Object Pose Estimation
    Huang, Wei-Lun
    Hung, Chun-Yi
    Lin, I-Chen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 3025 - 3035
  • [42] Focal segmentation for robust 6D object pose estimation
    Ye, Yuning
    Park, Hanhoon
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (16) : 47563 - 47585
  • [43] DeepIM: Deep Iterative Matching for 6D Pose Estimation
    Li, Yi
    Wang, Gu
    Ji, Xiangyang
    Xiang, Yu
    Fox, Dieter
    COMPUTER VISION - ECCV 2018, PT VI, 2018, 11210 : 695 - 711
  • [44] ConvPoseCNN: Dense Convolutional 6D Object Pose Estimation
    Capellen, Catherine
    Schwarz, Max
    Behnke, Sven
    PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 5: VISAPP, 2020, : 162 - 172
  • [45] Focal segmentation for robust 6D object pose estimation
    Yuning Ye
    Hanhoon Park
    Multimedia Tools and Applications, 2024, 83 : 47563 - 47585
  • [46] Open-vocabulary object 6D pose estimation
    Corsetti, Jaime
    Boscaini, Davide
    Oh, Changjae
    Cavallaro, Andrea
    Poiesi, Fabio
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 18071 - 18080
  • [47] Single-Stage 6D Object Pose Estimation
    Hu, Yinlin
    Fua, Pascal
    Wang, Wei
    Salzmann, Mathieu
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 2927 - 2936
  • [48] Sparse Keypoint Models for 6D Object Pose Estimation
    Sadran, Emal
    Wurm, Kai M.
    Burschka, Darius
    2013 EUROPEAN CONFERENCE ON MOBILE ROBOTS (ECMR 2013), 2013, : 307 - 312
  • [49] 6D Pose Estimation of Objects: Recent Technologies and Challenges
    He, Zaixing
    Feng, Wuxi
    Zhao, Xinyue
    Lv, Yongfeng
    APPLIED SCIENCES-BASEL, 2021, 11 (01): : 1 - 18
  • [50] The 6D Pose Estimation of the Aircraft Using Geometric Property
    Fu, Daoyong
    Han, Songchen
    Liang, Binbin
    Li, Wei
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (07) : 3358 - 3368