MagicCubePose, A more comprehensive 6D pose estimation network

被引:0
|
作者
Li, Fudong [1 ]
Gao, Dongyang [1 ]
Huang, Qiang [1 ]
Li, Wei [1 ]
Yang, Yuequan [1 ]
机构
[1] Yangzhou Univ, Coll Informat Engn, Artificial Intelligence Coll, Yangzhou 225000, Jiangsu, Peoples R China
关键词
D O I
10.1038/s41598-023-32936-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Most of the current mainstream 6D pose estimation methods use template or voting-based methods. Such methods are usually multi-stage or have multiple assumptions and post-correction, which will cause a certain degree of information redundancy and increase the computational cost, their real-time detection performance is poor. We point out that traditional path aggregation networks introduce new errors, therefore, we propose a loss function: MagicCubeLoss, a portable module: MagicCubeNet, and the corresponding 6D pose estimation model: MagicCubePose. MagicCubePose has good expansion performance and can build more efficient models for different calculation power and scenarios. Experiments show that our model has good real-time detection performance and the highest ADD(-S) accuracy.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] DCL-Net: Deep Correspondence Learning Network for 6D Pose Estimation
    Li, Hongyang
    Lin, Jiehong
    Jia, Kui
    COMPUTER VISION, ECCV 2022, PT IX, 2022, 13669 : 369 - 385
  • [32] DRNet: A Depth-Based Regression Network for 6D Object Pose Estimation
    Jin, Lei
    Wang, Xiaojuan
    He, Mingshu
    Wang, Jingyue
    SENSORS, 2021, 21 (05) : 1 - 15
  • [33] Lightweight Full-Flow Bidirectional Fusion Network for 6D Pose Estimation
    Lin, Haotian
    Li, Yongchang
    Jiang, Jing
    Qin, Guangjun
    Computer Engineering and Applications, 2024, 60 (22) : 282 - 291
  • [34] PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes
    Xiang, Yu
    Schmidt, Tanner
    Narayanan, Venkatraman
    Fox, Dieter
    ROBOTICS: SCIENCE AND SYSTEMS XIV, 2018,
  • [35] ACCURATE 6D OBJECT POSE ESTIMATION BY POSE CONDITIONED MESH RECONSTRUCTION
    Castro, Pedro
    Armagan, Anil
    Kim, Tae-Kyun
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 4147 - 4151
  • [36] SilhoNet: An RGB Method for 6D Object Pose Estimation
    Billings, Gideon
    Johnson-Roberson, Matthew
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (04): : 3727 - 3734
  • [37] Impact of Segmentation and Color Spaces in 6D Pose Estimation
    Pereira, Nuno
    Alexandre, Luis A.
    2021 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC), 2021, : 228 - 233
  • [38] On Object Symmetries and 6D Pose Estimation from Images
    Pitteri, Giorgia
    Ramamonjisoa, Michael
    Ilic, Slobodan
    Lepetit, Vincent
    2019 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2019), 2019, : 614 - 622
  • [39] DeepIM: Deep Iterative Matching for 6D Pose Estimation
    Yi Li
    Gu Wang
    Xiangyang Ji
    Yu Xiang
    Dieter Fox
    International Journal of Computer Vision, 2020, 128 : 657 - 678
  • [40] 6D Pose Estimation for Subsea Intervention in Turbid Waters
    Mohammed, Ahmed
    Kvam, Johannes
    Thielemann, Jens T.
    Haugholt, Karl H.
    Risholm, Petter
    ELECTRONICS, 2021, 10 (19)