Anomaly Detection in Renewable Energy Big Data Using Deep Learning

被引:0
|
作者
Katamoura, Suzan MohammadAli [1 ]
Aksoy, Mehmet Sabih [1 ]
机构
[1] King Saud Univ, Coll Comp & Informat Syst, Riyadh, Pakistan
关键词
Anomaly Detection; Big Data; Deep Learning; Renewable Energy; Solar Data;
D O I
10.4018/IJIIT.331595
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work aims to review the literature on anomaly detection (AD) in renewable energy. Due to the significance of the RE data quality and sensor performance, it is crucial to ensure that the measurement device works correctly and maintains data accuracy. The review identifies the relevant studies on big data anomaly detection in the energy field and synthesizes the related techniques. Also, the study shows a need for segmentation annotations for solar system electroluminescence imagery complicating the domain development of anomaly segmentation approaches. Consequently, most processes create machine learning (ML) models using semi-supervised techniques. Still, these approaches need more generalization regarding variation in environmental or systematic conditions. Furthermore, the studies discussed here focus on existing algorithms that used big data and AD to propose an improved analysis framework. Finally, the work presents a framework to solve the problem of identifying sensors' issues that will appear in data anomalies.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Hyperspectral Anomaly Detection Using Deep Learning: A Review
    Hu, Xing
    Xie, Chun
    Fan, Zhe
    Duan, Qianqian
    Zhang, Dawei
    Jiang, Linhua
    Wei, Xian
    Hong, Danfeng
    Li, Guoqiang
    Zeng, Xinhua
    Chen, Wenming
    Wu, Dongfang
    Chanussot, Jocelyn
    REMOTE SENSING, 2022, 14 (09)
  • [32] SADDLE: Spacecraft Anomaly Detection using Deep Learning
    Srivastava, Ankit
    Badal, Neeraj
    Manoj, B. S.
    2024 IEEE SPACE, AEROSPACE AND DEFENCE CONFERENCE, SPACE 2024, 2024, : 128 - 131
  • [33] A review on anomaly detection techniques using deep learning
    NOMURA Y.
    Zairyo/Journal of the Society of Materials Science, Japan, 2020, 69 (09) : 650 - 656
  • [34] Anomaly Detection at the IoT Edge using Deep Learning
    Utomo, Darmawan
    Hsiung, Pao-Ann
    2019 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TW), 2019,
  • [35] Network anomaly detection using deep learning techniques
    Hooshmand, Mohammad Kazim
    Hosahalli, Doreswamy
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2022, 7 (02) : 228 - 243
  • [36] Anomaly detection for cellular networks using big data analytics
    Li, Bing
    Zhao, Shengjie
    Zhang, Rongqing
    Shi, Qingjiang
    Yang, Kai
    IET COMMUNICATIONS, 2019, 13 (20) : 3351 - 3359
  • [37] Sensor Data-Driven UAV Anomaly Detection using Deep Learning Approach
    Galvan, Julio
    Raja, Ashok
    Li, Yanyan
    Yuan, Jiawei
    2021 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM 2021), 2021,
  • [38] The anomaly detection mechanism using deep learning in a limited amount of data for fog networking
    Horng G.-J.
    Liu M.-X.
    Hsu C.-C.
    Computer Communications, 2021, 170 : 130 - 143
  • [39] A Data Mining Method Using Deep Learning for Anomaly Detection in Cloud Computing Environment
    Gao, Jin
    Liu, Jiaquan
    Guo, Sihua
    Zhang, Qi
    Wang, Xinyang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [40] Deep learning on temporal-spectral data for anomaly detection
    Ma, King
    Leung, Henry
    Jalilian, Ehsan
    Huang, Daniel
    GROUND/AIR MULTISENSOR INTEROPERABILITY, INTEGRATION, AND NETWORKING FOR PERSISTENT ISR VIII, 2017, 10190