Some results of capacity in fractional Sobolev spaces with variable exponents

被引:0
|
作者
Akdim, Youssef [1 ]
Elharch, Rachid [2 ]
Hassib, M. C. [2 ]
Rhali, Soumia Lalaoui [2 ]
机构
[1] Univ Sidi Mohamed Ben Abdellah, Fac Sci Dhar El Mahraz, Dept Math, LAMA Lab, Atlas Fez 1796, Morocco
[2] Sidi Mohamed Ben Abdellah Univ, Polydisciplinary Fac Taza, Lab Engn Sci LSI, Taza 1223, Morocco
关键词
Fractional Sobolev spaces with variable exponents; Capacity; Fractional Sobolev spaces and zero boundary values; Dirichlet energy; ZERO BOUNDARY-VALUES; LEBESGUE;
D O I
10.1007/s41808-022-00189-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this note is to study the theory of capacity in fractional Sobolev spaces with variable exponents. We focus on the most important properties of this capacity including the convergence of a sequence, the determination of subsets of S1 with null capacity. In addition, we define the fractional Sobolev space with variable exponents and zero boundary values and we prove some of its basic properties, such as reflexivity. To illustrate our results, we show that the Dirichlet energy has a minimizer in fractional Sobolev spaces with variable exponents.
引用
收藏
页码:93 / 106
页数:14
相关论文
共 50 条
  • [41] Existence Results for Nonlinear Elliptic Equations with Leray-Lions Operators in Sobolev Spaces with Variable Exponents
    Al-Shomrani, M. Mosa
    Salah, M. Ben Mohamed
    Ghanmi, A.
    Kefi, K.
    MATHEMATICAL NOTES, 2021, 110 (5-6) : 830 - 841
  • [42] Existence Results for Double Phase Problem in Sobolev-Orlicz Spaces with Variable Exponents in Complete Manifold
    Aberqi, Ahmed
    Bennouna, Jaouad
    Benslimane, Omar
    Ragusa, Maria Alessandra
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (04)
  • [43] A modular Poincare-Wirtinger inequality for Sobolev spaces with variable exponents
    Davoli, Elisa
    Di Fratta, Giovanni
    Fiorenza, Alberto
    Happ, Leon
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (05):
  • [44] Wavelet Characterization of Local Muckenhoupt Weighted Sobolev Spaces with Variable Exponents
    Mitsuo Izuki
    Toru Nogayama
    Takahiro Noi
    Yoshihiro Sawano
    Constructive Approximation, 2023, 57 : 161 - 234
  • [45] Wavelet Characterization of Local Muckenhoupt Weighted Sobolev Spaces with Variable Exponents
    Izuki, Mitsuo
    Nogayama, Toru
    Noi, Takahiro
    Sawano, Yoshihiro
    CONSTRUCTIVE APPROXIMATION, 2023, 57 (01) : 161 - 234
  • [46] Mixed Sobolev-like inequalities in Lebesgue spaces of variable exponents and in Orlicz spaces
    Chamorro, Diego
    POSITIVITY, 2022, 26 (01)
  • [47] Mixed Sobolev-like inequalities in Lebesgue spaces of variable exponents and in Orlicz spaces
    Diego Chamorro
    Positivity, 2022, 26
  • [48] Sobolev embeddings for Riesz potential spaces of variable exponents near 1 and Sobolev's exponent
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    BULLETIN DES SCIENCES MATHEMATIQUES, 2010, 134 (01): : 12 - 36
  • [49] Approximation results in Sobolev and fractional Sobolev spaces by sampling Kantorovich operators
    Cantarini, Marco
    Costarelli, Danilo
    Vinti, Gianluca
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (06) : 2493 - 2521
  • [50] Approximation results in Sobolev and fractional Sobolev spaces by sampling Kantorovich operators
    Marco Cantarini
    Danilo Costarelli
    Gianluca Vinti
    Fractional Calculus and Applied Analysis, 2023, 26 : 2493 - 2521