3D Printing of Na1.3Al0.3Ti1.7(PO4)3 Solid Electrolyte via Fused Filament Fabrication for All-Solid-State Sodium-Ion Batteries

被引:4
|
作者
Kutlu, Aycan C. [1 ]
Noetzel, Dorit [2 ]
Ziebert, Carlos [1 ]
Seifert, Hans J. [1 ]
Ul Mohsin, Ijaz [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Appl Mat Appl Mat Phys IAM AWP, Karlsruhe, Germany
[2] Karlsruhe Inst Technol, Inst Appl Mat Mat Sci & Engn IAM WK, Karlsruhe, Germany
关键词
3D printing; FFF; solid electrolyte; sodium-ion battery; solid-state; SINTERING TEMPERATURE; RHEOLOGICAL BEHAVIOR; CONDUCTIVITY; EXCESS; MICROSTRUCTURE; PERFORMANCE; CHEMISTRY; POWDER;
D O I
10.1002/batt.202300357
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
All solid-state batteries pave the way to safer batteries as they do not contain flammable components and allow potentially higher energy densities through the direct use of alkali metals as anode materials. However, the applicability of solid electrolytes is hindered by their slower diffusion kinetics and charge transfer processes compared to liquid electrolytes. The purpose of this study is to investigate the electrochemical performance of 3D printed ceramic electrolyte. Prepared filaments were printed with optimized parameters and the polymeric binders were subsequently removed by solvent/-thermal debinding followed by a sintering process. The most reliable prints were performed with 58 vol % filled feedstock and the highest densities of sintered specimen were measured at a sintering temperature of 1100 degree celsius with (94.27 +/- 0.37)% and (94.27 +/- 0.07)% for printed and pressed samples, respectively. The lowest impedances for 3D printed samples were measured for 1100 degree celsius sintered specimen, yielding conductivities of (1.711 +/- 0.166)x10(-4) S cm(-1) at 200 degree celsius. Stripping/plating tests performed at 60 degree celsius confirmed the feasibility of 3D printed electrolytes realized by Fused Filament Fabrication (FFF) for the application in solid-state batteries.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Synthesis of cubic Na3SbS4 solid electrolyte with enhanced ion transport for all-solid-state sodium-ion batteries
    Zhang, Dechao
    Cao, Xiaoting
    Xu, Di
    Wang, Ning
    Yu, Chuang
    Hu, Wentao
    Yan, Xinlin
    Mi, Jianli
    Wen, Bin
    Wang, Limin
    Zhang, Long
    ELECTROCHIMICA ACTA, 2018, 259 : 100 - 109
  • [32] Synthesis of Li1.3Al0.3Ti1.7(PO4)3-coated LiCoO2 cathode powder for all-solid-state lithium batteries
    Nam, Ki-Sun
    Kim, Kangsanin
    Kim, Kyungsun
    Lee, Jon-Won
    Moon, Ji-Woong
    Hwang, Haejin
    POWDER METALLURGY, 2023, 66 (05) : 714 - 721
  • [33] Charge Carrier Dynamics of the Mixed Conducting Interphase in All-Solid-State Batteries: Lithiated Li1.3Al0.3Ti1.7(PO4)3 as a Case Study
    Scheiber, Thomas
    Gadermaier, Bernhard
    Finsgar, Matjaz
    Wilkening, H. Martin R.
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (45)
  • [34] Facile Route to Synthesize a Highly Sinterable Li1.3Al0.3Ti1.7(PO4)3 Solid Electrolyte
    Luo, Changwei
    Zhao, Guoqiang
    Zhang, Mengyang
    Wu, Bin
    Hua, Qingsong
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (03) : 3289 - 3301
  • [35] Effect of pressure on the properties of a NASICON Li1.3Al0.3Ti1.7(PO4)3 nanofiber solid electrolyte
    La Monaca, Andrea
    Girard, Gabriel
    Savoie, Sylvio
    Demers, Hendrix
    Bertoni, Giovanni
    Krachkovskiy, Sergey
    Marras, Sergio
    Mugnaioli, Enrico
    Gemmi, Mauro
    Benetti, Daniele
    Vijh, Ashok
    Rosei, Federico
    Paolella, Andrea
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (23) : 13688 - 13696
  • [36] Enhanced electrochemical performance of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte by anion doping
    Kang, Jingrui
    Guo, Xu
    Gu, Rui
    Hao, Honglei
    Tang, Yi
    Wang, Jiahui
    Jin, Li
    Li, Hongfei
    Wei, Xiaoyong
    NANO RESEARCH, 2024, 17 (03) : 1465 - 1472
  • [37] High ionic conductivity Y doped Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Zhao, Erqing
    Guo, Yudi
    Xu, Guangri
    Yuan, Long
    Liu, Jingcheng
    Li, Xiaobo
    Yang, Li
    Ma, Jingjing
    Li, Yuanchao
    Fan, Shumin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 782 : 384 - 391
  • [38] Enhanced electrochemical performance of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte by anion doping
    Jingrui Kang
    Xu Guo
    Rui Gu
    Honglei Hao
    Yi Tang
    Jiahui Wang
    Li Jin
    Hongfei Li
    Xiaoyong Wei
    Nano Research, 2024, 17 : 1465 - 1472
  • [39] Interface Analysis of LiCl as a Protective Layer of Li1.3Al0.3Ti1.7(PO4)3 for Electrochemically Stabilized All-Solid-State Li-Metal Batteries
    Sohib, Ahmad
    Irham, Muhammad Alief
    Karunawan, Jotti
    Santosa, Sigit Puji
    Floweri, Octia
    Iskandar, Ferry
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (13) : 16562 - 16570
  • [40] Enhanced electrochemical properties and interfacial stability of poly(ethylene oxide) solid electrolyte incorporating nanostructured Li1.3Al0.3Ti1.7(PO4)3 fillers for all solid state lithium ion batteries
    Zhao, Erqing
    Guo, Yudi
    Xin, Yuan
    Xu, Guangri
    Guo, Xiaowei
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (05) : 6876 - 6887