3D Printing of Na1.3Al0.3Ti1.7(PO4)3 Solid Electrolyte via Fused Filament Fabrication for All-Solid-State Sodium-Ion Batteries

被引:4
|
作者
Kutlu, Aycan C. [1 ]
Noetzel, Dorit [2 ]
Ziebert, Carlos [1 ]
Seifert, Hans J. [1 ]
Ul Mohsin, Ijaz [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Appl Mat Appl Mat Phys IAM AWP, Karlsruhe, Germany
[2] Karlsruhe Inst Technol, Inst Appl Mat Mat Sci & Engn IAM WK, Karlsruhe, Germany
关键词
3D printing; FFF; solid electrolyte; sodium-ion battery; solid-state; SINTERING TEMPERATURE; RHEOLOGICAL BEHAVIOR; CONDUCTIVITY; EXCESS; MICROSTRUCTURE; PERFORMANCE; CHEMISTRY; POWDER;
D O I
10.1002/batt.202300357
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
All solid-state batteries pave the way to safer batteries as they do not contain flammable components and allow potentially higher energy densities through the direct use of alkali metals as anode materials. However, the applicability of solid electrolytes is hindered by their slower diffusion kinetics and charge transfer processes compared to liquid electrolytes. The purpose of this study is to investigate the electrochemical performance of 3D printed ceramic electrolyte. Prepared filaments were printed with optimized parameters and the polymeric binders were subsequently removed by solvent/-thermal debinding followed by a sintering process. The most reliable prints were performed with 58 vol % filled feedstock and the highest densities of sintered specimen were measured at a sintering temperature of 1100 degree celsius with (94.27 +/- 0.37)% and (94.27 +/- 0.07)% for printed and pressed samples, respectively. The lowest impedances for 3D printed samples were measured for 1100 degree celsius sintered specimen, yielding conductivities of (1.711 +/- 0.166)x10(-4) S cm(-1) at 200 degree celsius. Stripping/plating tests performed at 60 degree celsius confirmed the feasibility of 3D printed electrolytes realized by Fused Filament Fabrication (FFF) for the application in solid-state batteries.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Preparation of powders and films of the lithium ion conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3
    G. B. Kunshina
    O. G. Gromov
    E. P. Lokshin
    V. T. Kalinnikov
    Inorganic Materials, 2013, 49 : 95 - 100
  • [22] Preparation of powders and films of the lithium ion conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3
    Kunshina, G. B.
    Gromov, O. G.
    Lokshin, E. P.
    Kalinnikov, V. T.
    INORGANIC MATERIALS, 2013, 49 (01) : 95 - 100
  • [23] Sol-gel synthesis of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    G. B. Kunshina
    O. G. Gromov
    E. P. Lokshin
    V. T. Kalinnikov
    Russian Journal of Inorganic Chemistry, 2014, 59 : 424 - 430
  • [24] Sol-gel synthesis of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Kunshina, G. B.
    Gromov, O. G.
    Lokshin, E. P.
    Kalinnikov, V. T.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2014, 59 (05) : 424 - 430
  • [25] Lithium conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 obtained via solution chemistry
    Duluard, Sandrine
    Paillassa, Aude
    Puech, Laurent
    Vinatier, Philippe
    Turq, Viviane
    Rozier, Patrick
    Lenormand, Pascal
    Taberna, Pierre-Louis
    Simon, Patrice
    Ansart, Florence
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2013, 33 (06) : 1145 - 1153
  • [26] Anisotropy of the mechanical properties of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte material
    Yan, Gang
    Yu, Shicheng
    Yang, Weiguang
    Li, Xiaoqiang
    Tempel, Hermann
    Kungl, Hans
    Eichel, Ruediger A.
    Krueger, Manja
    Malzbender, Juergen
    JOURNAL OF POWER SOURCES, 2019, 437
  • [27] Field-assisted sintering of Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolyte
    Rosenberger, Andrew
    Gao, Yu
    Stanciu, Lia
    SOLID STATE IONICS, 2015, 278 : 217 - 221
  • [28] Isotropic negative thermal expansion of a Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolyte
    Ghosh, Sayan
    Sudakar, C.
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (42) : 29271 - 29277
  • [29] Li1.3Ti1.7Al0.3(PO4)3,Na1.3Ti1.7Al0.3(PO4)3的离子交换研究
    娄太平
    张乐
    郭军兴
    化学学报, 2010, 68 (06) : 466 - 470
  • [30] LiF-doped Li1.3Al0.3Ti1.7(PO4)3 superionic conductors with enhanced ionic conductivity for all-solid-state lithium-ion batteries
    Chang Miao
    Zhiyan Kou
    Jieqiong Li
    Chengjin Liu
    Qiyan Chen
    Yanhong Xiang
    Wei Xiao
    Ionics, 2022, 28 : 73 - 83