Fractional Multiplicative Bullen-Type Inequalities for Multiplicative Differentiable Functions

被引:22
|
作者
Boulares, Hamid [1 ]
Meftah, Badreddine [1 ]
Moumen, Abdelkader [2 ]
Shafqat, Ramsha [3 ]
Saber, Hicham [2 ]
Alraqad, Tariq [2 ]
Ali, Ekram E. [2 ]
机构
[1] Univ Guelma, Fac MISM, Dept Math, Lab Anal & Control Differential Equat ACED, Guelma 24000, Algeria
[2] Univ Hail, Fac Sci, Dept Math, Hail 55425, Saudi Arabia
[3] Univ Lahore, Dept Math & Stat, Sargodha 40100, Pakistan
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 02期
关键词
non-Newtonian calculus; Bullen inequality; multiplicatively convex functions; HERMITE-HADAMARD TYPE; INTEGRAL-INEQUALITIES; DERIVATIVES; CALCULUS; SPACES;
D O I
10.3390/sym15020451
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Various scholars have lately employed a wide range of strategies to resolve specific types of symmetrical fractional differential equations. In this paper, we propose a new fractional identity for multiplicatively differentiable functions; based on this identity, we establish some new fractional multiplicative Bullen-type inequalities for multiplicative differentiable convex functions. Some applications of the obtained results are given.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] New version of fractional Simpson type inequalities for twice differentiable functions
    Hezenci, Fatih
    Budak, Huseyin
    Kara, Hasan
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [42] Fractional midpoint-type inequalities for twice-differentiable functions
    Hezenci, Fatih
    Bohner, Martin
    Budaka, Huseyin
    FILOMAT, 2023, 37 (24) : 8131 - 8144
  • [43] Hermite-Hadamard type inequalities for multiplicative Riemann-Liouville fractional integrals
    Du, Tingsong
    Peng, Yu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 440
  • [44] Symmetrical Hermite-Hadamard type inequalities stemming from multiplicative fractional integrals
    Peng, Yu
    Ozcan, Serap
    Du, Tingsong
    CHAOS SOLITONS & FRACTALS, 2024, 183
  • [45] Multiplicative Bell inequalities
    Te'eni, Amit
    Peled, Bar Y.
    Cohen, Eliahu
    Carmi, Avishy
    PHYSICAL REVIEW A, 2019, 99 (04)
  • [46] Hermite-Hadamard-Type Inequalities for Multiplicative Harmonic s-Convex Functions
    Ozcan, Serap
    Urus, Ayca
    Butt, Saad Ihsan
    UKRAINIAN MATHEMATICAL JOURNAL, 2025, : 1537 - 1558
  • [47] Fractional Simpson like type inequalities for differentiable s-convex functions
    Kamouche, N.
    Ghomrani, S.
    Meftah, B.
    JOURNAL OF APPLIED MATHEMATICS STATISTICS AND INFORMATICS, 2022, 18 (01) : 73 - 91
  • [48] Conformable fractional Newton-type inequalities with respect to differentiable convex functions
    Cihan Ünal
    Fatih Hezenci
    Hüseyin Budak
    Journal of Inequalities and Applications, 2023
  • [49] FRACTIONAL SIMPSON LIKE TYPE INEQUALITIES FOR DIFFERENTIABLE s-CONVEX FUNCTIONS
    Bouhadjar, S.
    Meftah, B.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 16 (03): : 563 - 584
  • [50] FRACTIONAL SIMPSON LIKE TYPE INEQUALITIES FOR DIFFERENTIABLE s-CONVEX FUNCTIONS
    Bouhadjar, S.
    Meftah, B.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 16 (03): : 563 - 584