Fractional Multiplicative Bullen-Type Inequalities for Multiplicative Differentiable Functions

被引:22
|
作者
Boulares, Hamid [1 ]
Meftah, Badreddine [1 ]
Moumen, Abdelkader [2 ]
Shafqat, Ramsha [3 ]
Saber, Hicham [2 ]
Alraqad, Tariq [2 ]
Ali, Ekram E. [2 ]
机构
[1] Univ Guelma, Fac MISM, Dept Math, Lab Anal & Control Differential Equat ACED, Guelma 24000, Algeria
[2] Univ Hail, Fac Sci, Dept Math, Hail 55425, Saudi Arabia
[3] Univ Lahore, Dept Math & Stat, Sargodha 40100, Pakistan
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 02期
关键词
non-Newtonian calculus; Bullen inequality; multiplicatively convex functions; HERMITE-HADAMARD TYPE; INTEGRAL-INEQUALITIES; DERIVATIVES; CALCULUS; SPACES;
D O I
10.3390/sym15020451
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Various scholars have lately employed a wide range of strategies to resolve specific types of symmetrical fractional differential equations. In this paper, we propose a new fractional identity for multiplicatively differentiable functions; based on this identity, we establish some new fractional multiplicative Bullen-type inequalities for multiplicative differentiable convex functions. Some applications of the obtained results are given.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] MULTIPLICATIVE CHARACTER SUMS WITH TWICE-DIFFERENTIABLE FUNCTIONS
    Banks, William D.
    Shparlinski, Igor E.
    QUARTERLY JOURNAL OF MATHEMATICS, 2009, 60 (04): : 401 - 411
  • [32] Fractional Ostrowski type inequalities for differentiable harmonically convex functions
    Sitthiwirattham, Thanin
    Ali, Muhammad Aamir
    Budak, Huseyin
    Ntouyas, Sotiris K.
    Promsakon, Chanon
    AIMS MATHEMATICS, 2022, 7 (03): : 3939 - 3958
  • [33] Fractional Simpson-Type Inequalities for Twice Differentiable Functions
    Budak, Hueseyin
    Kara, Hasan
    Hezenci, Fatih
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2023, 20 (03): : 97 - 108
  • [34] A Note on Fractional Simpson Type Inequalities for Twice Differentiable Functions
    Hezenci, Fatih
    MATHEMATICA SLOVACA, 2023, 73 (03) : 675 - 686
  • [35] Fractional Milne-type inequalities for twice differentiable functions
    Almoneef, Areej A.
    Hyder, Abd-Allah
    Budak, Huseyin
    Barakat, Mohamed A.
    AIMS MATHEMATICS, 2024, 9 (07): : 19771 - 19785
  • [36] MULTIPLICATIVE SOBOLEV INEQUALITIES OF THE LADYZHENSKAYA TYPE
    Cho, Yong-Kum
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (02): : 335 - 341
  • [37] HYBRID FRACTIONAL INTEGRAL INEQUALITIES IN MULTIPLICATIVE CALCULUS WITH APPLICATIONS
    Umar, Muhammad
    Butt, Saad ihsan
    Seol, Youngsoo
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2025, 33 (01)
  • [38] New version of fractional Simpson type inequalities for twice differentiable functions
    Fatih Hezenci
    Hüseyin Budak
    Hasan Kara
    Advances in Difference Equations, 2021
  • [39] Fractional trapezium type inequalities for twice differentiable preinvex functions and their applications
    Kashuri, Artion
    Liko, Rozana
    INTERNATIONAL JOURNAL OF OPTIMIZATION AND CONTROL-THEORIES & APPLICATIONS-IJOCTA, 2020, 10 (02): : 226 - 236
  • [40] PERTURBED FRACTIONAL NEWTON-TYPE INEQUALITIES BY TWICE DIFFERENTIABLE FUNCTIONS
    Hezenci, Fatih
    Kara, Hasan
    Budak, Huseyin
    HONAM MATHEMATICAL JOURNAL, 2023, 45 (02): : 285 - 299