Discovery of drug-omics associations in type 2 diabetes with generative deep-learning models

被引:47
|
作者
Allesoe, Rosa Lundbye [1 ,2 ,3 ]
Lundgaard, Agnete Troen [1 ,2 ]
Medina, Ricardo Hernandez [1 ]
Aguayo-Orozco, Alejandro [1 ,2 ]
Johansen, Joachim [1 ,2 ]
Nissen, Jakob Nybo [1 ]
Brorsson, Caroline [1 ,2 ]
Mazzoni, Gianluca [1 ,2 ]
Niu, Lili [1 ]
Biel, Jorge Hernansanz [1 ,2 ]
Brasas, Valentas [1 ]
Webel, Henry [1 ]
Benros, Michael Eriksen [3 ,4 ]
Pedersen, Anders Gorm [2 ]
Chmura, Piotr Jaroslaw [1 ,2 ]
Jacobsen, Ulrik Plesner [1 ,2 ]
Mari, Andrea [5 ]
Koivula, Robert [6 ]
Mahajan, Anubha [6 ]
Vinuela, Ana [7 ,8 ]
Tajes, Juan Fernandez [6 ]
Sharma, Sapna [9 ,10 ,11 ]
Haid, Mark [12 ]
Hong, Mun-Gwan [13 ]
Musholt, Petra B. [14 ]
De Masi, Federico [1 ,2 ]
Vogt, Josef [15 ]
Pedersen, Helle Krogh [2 ,15 ]
Gudmundsdottir, Valborg [1 ,2 ]
Jones, Angus [16 ]
Kennedy, Gwen [17 ]
Bell, Jimmy [18 ]
Thomas, E. Louise [18 ]
Frost, Gary [19 ]
Thomsen, Henrik [20 ]
Hansen, Elizaveta [20 ]
Hansen, Tue Haldor [15 ]
Vestergaard, Henrik [15 ]
Muilwijk, Mirthe [21 ]
Blom, Marieke T. [22 ]
Hart, Leen M. T. [21 ,23 ,24 ]
Pattou, Francois [25 ]
Raverdy, Violeta [25 ]
Brage, Soren [26 ]
Kokkola, Tarja [27 ]
Heggie, Alison [28 ]
McEvoy, Donna [29 ]
Mourby, Miranda [30 ]
Kaye, Jane [30 ]
Hattersley, Andrew [16 ]
机构
[1] Univ Copenhagen, Novo Nordisk Fdn Ctr Prot Res, Fac Hlth & Med Sci, Copenhagen, Denmark
[2] Tech Univ Denmark, Dept Hlth Technol, Lyngby, Denmark
[3] Copenhagen Univ Hosp, Copenhagen Res Ctr Mental Hlth, Mental Hlth Ctr Copenhagen, Copenhagen, Denmark
[4] Univ Copenhagen, Fac Hlth & Med Sci, Dept Immunol & Microbiol, Copenhagen, Denmark
[5] CNR, Inst Neurosci, Padua, Italy
[6] Univ Oxford, Wellcome Ctr Human Genet, Oxford, England
[7] Univ Geneva, Dept Genet Med & Dev, Med Sch, Geneva, Switzerland
[8] Newcastle Univ, Fac Med Sci, Biosci Inst, Newcastle Upon Tyne, Tyne & Wear, England
[9] Helmholtz Zentrum Munchen, Res Unit Mol Epidemiol, German Res Ctr Environm Hlth, Neuherberg, Bavaria, Germany
[10] Helmholtz Zentrum Munchen, Inst Epidemiol, German Res Ctr Environm Hlth, Neuherberg, Bavaria, Germany
[11] Tech Univ Munich, Chair Food Chem & Mol & Sensory Sci, Freising Weihenstephan, Germany
[12] Helmholtz Zentrum Muenchen, German Res Ctr Environm Hlth, Metabol & Prote Core, Neuherberg, Germany
[13] KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Sci Life Lab, Affin Prote, Solna, Sweden
[14] Sanofi Aventis Deutschland, Res & Dev Global Dev Translat Med & Clin Pharmaco, Frankfurt, Germany
[15] Univ Copenhagen, Novo Nordisk Fdn Ctr Basic Metab Res, Fac Hlth & Med Sci, Copenhagen, Denmark
[16] Univ Exeter Med Sch, Exeter, Devon, England
[17] Univ Dundee, Sch Med, Immunoassay Biomarker Core Lab, Dundee, Scotland
[18] Univ Westminster, Res Ctr Optimal Hlth, Dept Life Sci, London, England
[19] Imperial Coll London, Fac Med, Sect Nutr Res, London, England
[20] Copenhagen Univ Hosp Herlev Gentofte, Dept Radiol, Herlev, Denmark
[21] Vrije Univ Amsterdam, Amsterdam Publ Hlth Res Inst, Dept Epidemiol & Data Sci, Amsterdam UMC, Amsterdam, Netherlands
[22] Vrije Univ Amsterdam, Amsterdam Publ Hlth Res Inst, Dept Gen Practice, Amsterdam UMC, Amsterdam, Netherlands
[23] Leiden Univ Med Ctr, Dept Biomed Data Sci, Sect Mol Epidemiol, Leiden, Netherlands
[24] Leiden Univ Med Ctr, Dept Cell & Chem Biol, Leiden, Netherlands
[25] Univ Lille, Lille Pasteur Inst, EGID, CHU Lille,Inserm, Lille, France
[26] Univ Cambridge, MRC Epidemiol Unit, Sch Clin Med, Cambridge, England
[27] Univ Eastern Finland, Dept Med, Kuopio, Finland
[28] Newcastle Univ, Inst Cellular Med, Newcastle Upon Tyne, Tyne & Wear, England
[29] Royal Victoria Infirm, Diabet Res Network, Newcastle Upon Tyne, Tyne & Wear, England
[30] Univ Oxford, Fac Law, Ctr Hlth Law & Emerging Technol HeLEX, Oxford, England
[31] Lund Univ, Lund Univ Diabet Ctr, Dept Clin Sci, Malmo, Sweden
[32] Newcastle Univ, Fac Med Sci, Translat & Clin Res Inst, Newcastle Upon Tyne, Tyne & Wear, England
[33] Univ Dundee, Sch Med, Div Populat Hlth & Genom, Dundee, Scotland
[34] Lund Univ, Lund Univ Diabet Ctr, Dept Clin Sci, Genet & Mol Epidemiol Unit,CRC,SUS, Malmo, Sweden
[35] Eli Lilly Reg Operat, Vienna, Austria
[36] Harvard TH Chan Sch Publ Hlth, Boston, MA USA
[37] Univ Oxford, Radcliffe Dept Med, OCDEM, Oxford, England
[38] German Res Ctr Environm Hlth, Inst Expt Genet, Helmholtz Zentrum Munchen, Neuherberg, Germany
[39] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Biochem, Singapore, Singapore
[40] Univ Ljubljana, Fac Med, Inst Biochem, Ljubljana, Slovenia
[41] Univ Oxford, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England
[42] Genentech Inc, San Francisco, CA 94080 USA
关键词
METFORMIN TREATMENT; MULTI-OMICS; METAANALYSIS; CHOLESTEROL;
D O I
10.1038/s41587-022-01520-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug-omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug-drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities.
引用
收藏
页码:399 / +
页数:17
相关论文
共 50 条
  • [41] Improving drug discovery with a hybrid deep generative model using reinforcement learning trained on a Bayesian docking approximation
    Xiong, Youjin
    Wang, Yiqing
    Wang, Yisheng
    Li, Chenmei
    Peng, Yusong
    Wu, Junyu
    Wang, Yiqing
    Gu, Lingyun
    Butch, Christopher J.
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2023, 37 (11) : 507 - 517
  • [42] Improving drug discovery with a hybrid deep generative model using reinforcement learning trained on a Bayesian docking approximation
    Youjin Xiong
    Yiqing Wang
    Yisheng Wang
    Chenmei Li
    Peng Yusong
    Junyu Wu
    Yiqing Wang
    Lingyun Gu
    Christopher J. Butch
    Journal of Computer-Aided Molecular Design, 2023, 37 : 507 - 517
  • [43] Underlying Genetic Models of Inheritance in Established Type 2 Diabetes Associations
    Salanti, Georgia
    Southam, Lorraine
    Altshuler, David
    Ardlie, Kristin
    Barroso, Ines
    Boehnke, Michael
    Cornelis, Marilyn C.
    Frayling, Timothy M.
    Grallert, Harald
    Grarup, Niels
    Groop, Leif
    Hansen, Torben
    Hattersley, Andrew T.
    Hu, Frank B.
    Hveem, Kristian
    Illig, Thomas
    Kuusisto, Johanna
    Laakso, Markku
    Langenberg, Claudia
    Lyssenko, Valeriya
    McCarthy, Mark I.
    Morris, Andrew
    Morris, Andrew D.
    Palmer, Colin N. A.
    Payne, Felicity
    Platou, Carl G. P.
    Scott, Laura J.
    Voight, Benjamin F.
    Wareham, Nicholas J.
    Zeggini, Eleftheria
    Ioannidis, John P. A.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2009, 170 (05) : 537 - 545
  • [44] Peptidomics biomarker discovery in mouse models of obesity and type 2 diabetes
    Budde, P
    Schulte, L
    Appel, A
    Neitz, S
    Kellmann, M
    Tammen, H
    Hess, R
    Rose, H
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2005, 8 (08) : 775 - 781
  • [45] De Novo Drug Design Using Reinforcement Learning with Graph- Based Deep Generative Models
    Atance, Sara Romeo
    Diez, Juan Viguera
    Engkvist, Ola
    Olsson, Simon
    Mercado, Rocio
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (20) : 4863 - 4872
  • [46] Molecular targets for new drug discovery to treat type 2 diabetes and obesity
    Bastarrachea, Raul A.
    Montero, Julio C.
    Saavedra-Gajardo, Victor
    Cerda-Flores, Ricardo
    Machado-Dominguez, Anselmo
    Comuzzie, Anthony G.
    REVISTA MEDICA DE CHILE, 2008, 136 (01) : 107 - 117
  • [47] The Role of QSAR and Virtual Screening Studies in Type 2 Diabetes Drug Discovery
    Pantaleao, Simone Q.
    Fujii, Drielli G. V.
    Maltarollo, Vinicius G.
    Silva, Danielle da C.
    Trossini, Gustavo H. G.
    Weber, Karen C.
    Scott, Luis P. B.
    Honorio, Kathia M.
    MEDICINAL CHEMISTRY, 2017, 13 (08) : 706 - 720
  • [48] RE: "UNDERLYING GENETIC MODELS OF INHERITANCE IN ESTABLISHED TYPE 2 DIABETES ASSOCIATIONS"
    Hemminki, Kari
    Foersti, Asta
    Bermejo, Justo Lorenzo
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2010, 171 (10) : 1153 - 1154
  • [49] Deep learning models predict regulatory variants in pancreatic islets and refine type 2 diabetes association signals
    Wesolowska-Andersen, Agata
    Yu, Grace Zhuo
    Nylander, Vibe
    Abaitua, Fernando
    Thurner, Matthias
    Torres, Jason M.
    Mahajan, Anubha
    Gloyn, Anna L.
    McCarthy, Mark, I
    ELIFE, 2020, 9
  • [50] Deep Learning Approach as New Tool for Type 2 Diabetes Detection
    Ghafki, Oumaima
    Elachaak, Lotfi
    Elouaai, Fatiha
    Bouhorma, Mohammed
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON NETWORKING, INFORMATION SYSTEMS & SECURITY (NISS19), 2019,