The Role of QSAR and Virtual Screening Studies in Type 2 Diabetes Drug Discovery

被引:6
|
作者
Pantaleao, Simone Q. [1 ]
Fujii, Drielli G. V. [2 ]
Maltarollo, Vinicius G. [3 ]
Silva, Danielle da C. [1 ]
Trossini, Gustavo H. G. [2 ]
Weber, Karen C. [4 ]
Scott, Luis P. B.
Honorio, Kathia M. [1 ,5 ]
机构
[1] Fed Univ ABC, BR-09210170 Santo Andre, SP, Brazil
[2] Univ Sao Paulo, Fac Pharmaceut Sci, Dept Pharm, BR-05508000 Sao Paulo, SP, Brazil
[3] Univ Fed Minas Gerais, Fed Univ, Fac Pharm, Dept Pharmaceut Prod, BR-31270901 Belo Horizonte, MG, Brazil
[4] Univ Fed Paraiba, Dept Chem, BR-13083970 Joao Pessoa, Paraiba, Brazil
[5] Univ Sao Paulo, Sch Arts Sci & Humanities, BR-03828000 Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Biological targets; computational chemistry; diabetes; drug design; QSAR; virtual screening; ALPHA-GLUCOSIDASE INHIBITORS; INCREMENTAL CONSTRUCTION ALGORITHM; MOLECULAR DOCKING; DPP-4; INHIBITORS; DESIGN STRATEGIES; SGLT2; ACCURATE DOCKING; CHANNEL OPENERS; LIGAND DOCKING; 3D QSAR;
D O I
10.2174/1573406413666170522152102
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Background: Due to the increasing number of diabetes cases worldwide, there is an international concern to provide even more effective treatments to control this condition. Methods: This review brings together a selection of studies that helped to broaden the comprehension of various biological targets and associated mechanisms involved in type 2 diabetes mellitus. Results: Such studies demonstrated that QSAR techniques and virtual screenings have been successfully employed in drug design projects. Conclusions: Therefore, the main goal of this review is to give the state-of-art for the development of new drugs for the treatment of type 2 diabetes mellitus and to evaluate how computational tools, such as virtual screening and 3D-QSAR, can aid the development of new drugs with reduced adverse side effects.
引用
收藏
页码:706 / 720
页数:15
相关论文
共 50 条
  • [1] Systemic QSAR and phenotypic virtual screening: chasing butterflies in drug discovery
    Cruz-Monteagudo, Maykel
    Schurer, Stephan
    Tejera, Eduardo
    Perez-Castillo, Yunierkis
    Medina-Franco, Jose L.
    Sanchez-Rodriguez, Aminael
    Borges, Fernanda
    DRUG DISCOVERY TODAY, 2017, 22 (07) : 994 - 1007
  • [2] QSAR-Based Virtual Screening: Advances and Applications in Drug Discovery
    Neves, Bruno J.
    Braga, Rodolpho C.
    Melo-Filho, Cleber C.
    Moreira-Filho, Jose Teofilo
    Muratov, Eugene N.
    Andrade, Carolina Horta
    FRONTIERS IN PHARMACOLOGY, 2018, 9
  • [3] Artificial intelligence paradigm for ligand-based virtual screening on the drug discovery of type 2 diabetes mellitus
    Alhadi Bustamam
    Haris Hamzah
    Nadya A. Husna
    Sarah Syarofina
    Nalendra Dwimantara
    Arry Yanuar
    Devvi Sarwinda
    Journal of Big Data, 8
  • [4] Artificial intelligence paradigm for ligand-based virtual screening on the drug discovery of type 2 diabetes mellitus
    Bustamam, Alhadi
    Hamzah, Haris
    Husna, Nadya A.
    Syarofina, Sarah
    Dwimantara, Nalendra
    Yanuar, Arry
    Sarwinda, Devvi
    JOURNAL OF BIG DATA, 2021, 8 (01)
  • [5] Type 2 diabetes drug discovery and development
    Nature Reviews Drug Discovery, 2009, 8 : 431 - 431
  • [6] Type 2 diabetes drug discovery and development
    Moller, David E.
    Drucker, Daniel J.
    NATURE REVIEWS DRUG DISCOVERY, 2009, 8 (05) : 431 - 431
  • [7] Virtual screening strategies in drug discovery
    McInnes, Campbell
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2007, 11 (05) : 494 - 502
  • [8] Virtual compound screening in drug discovery
    Stumpfe, Dagmar
    Ripphausen, Peter
    Bajorath, Juergen
    FUTURE MEDICINAL CHEMISTRY, 2012, 4 (05) : 593 - 602
  • [9] Role of Open Source Tools and Resources in Virtual Screening for Drug Discovery
    Karthikeyan, Muthukumarasamy
    Vyas, Renu
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2015, 18 (06) : 528 - 543
  • [10] Thoughts on the progression of type 2 diabetes drug discovery
    Bhatt, Harikrashna B.
    EXPERT OPINION ON DRUG DISCOVERY, 2015, 10 (02) : 107 - 110